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Background: In studies evaluating the microbiome, numerous factors can contribute
to technical variability. These factors include DNA extraction methodology, sequencing
protocols, and data analysis strategies. We sought to evaluate the impact these factors
have on the results obtained when the sequence data are independently generated and
analyzed by different laboratories.

Methods: To evaluate the effect of technical variability, we used human intestinal biopsy
samples resected from individuals diagnosed with an inflammatory bowel disease (IBD),
including Crohn’s disease (n = 12) and ulcerative colitis (n = 10), and those without IBD
(n = 10). Matched samples from each participant were sent to three laboratories and
studied using independent protocols for DNA extraction, library preparation, targeted-
amplicon sequencing of a 16S rRNA gene hypervariable region, and processing of
sequence data. We looked at two measures of interest – Bray–Curtis PERMANOVA
R2 values and log2 fold-change estimates of the 25 most-abundant taxa – to assess
variation in the results produced by each laboratory, as well the relative contribution
to variation from the different extraction, sequencing, and analysis steps used to
generate these measures.

Results: The R2 values and estimated differential abundance associated with diagnosis
were consistent across datasets that used different DNA extraction and sequencing
protocols, and within datasets that pooled samples from multiple protocols; however,
variability in bioinformatic processing of sequence data led to changes in R2 values and
inconsistencies in taxonomic assignment and abundance estimates.

Conclusion: Although the contribution of DNA extraction and sequencing methods to
variability were observable, we find that results can be robust to the various extraction
and sequencing approaches used in our study. Differences in data processing methods

Frontiers in Microbiology | www.frontiersin.org 1 August 2020 | Volume 11 | Article 2028

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.02028
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.02028&domain=pdf&date_stamp=2020-08-21
https://www.frontiersin.org/articles/10.3389/fmicb.2020.02028/full
http://loop.frontiersin.org/people/379125/overview
http://loop.frontiersin.org/people/347087/overview
http://loop.frontiersin.org/people/669280/overview
http://loop.frontiersin.org/people/407026/overview
http://loop.frontiersin.org/people/988436/overview
http://loop.frontiersin.org/people/414760/overview
http://loop.frontiersin.org/people/188415/overview
http://loop.frontiersin.org/people/635958/overview
http://loop.frontiersin.org/people/65948/overview
http://loop.frontiersin.org/people/346390/overview
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-02028 August 20, 2020 Time: 20:6 # 2

Szamosi et al. Gut Microbiome Inter-Laboratory Variation Study

have a larger impact on results, making comparison among studies less reliable
and the combined analysis of bioinformatically processed samples nearly impossible.
Our results highlight the importance of making raw sequence data available to
facilitate combined and comparative analyses of published studies using common data
processing protocols. Study methodologies should provide detailed data processing
methods for validation, interpretability, reproducibility, and comparability.

Keywords: microbiome, standards, technical variability, 16S rRNA, intestinal biopsies, inflammatory bowel
diseases, replicability

INTRODUCTION

The human microbiome – the community of microorganisms
that live on and within the human body – is increasingly
recognized as playing a pivotal role in health and disease.
A substantial body of evidence indicates that the composition
of the microbiome can be both a driver and a marker of
health status (Hollister et al., 2014). The link between the gut
microbiome and diseases of the gastrointestinal tract such as
inflammatory bowel disease (IBD) is especially well established
(Matsuoka and Kanai, 2015). Treatment with antibiotics is known
to improve IBD symptoms in some patients with specific types
of IBD (Khan et al., 2011), and previous research has shown
that IBD is associated with a decrease in bacterial diversity,
a reduction in the phylum Firmicutes, and an increase in the
phylum Proteobacteria (Matsuoka and Kanai, 2015). However,
associations reported for IBD and bacterial taxa at the genus
and species level have been inconsistent (Matsuoka and Kanai,
2015). The dynamic nature of the gut microbiome and the
panoply of confounding factors that can influence its structure
have frustrated our ability to resolve these inconsistencies
(Lozupone et al., 2012). Of these, the technical variability
arising from the lack of adherence to any standard approach
for studying the microbiome is strongly implicated in the
inconsistency of the results reported by studies investigating the
association between gut microbiome composition and disease
status (Wesolowska-Andersen et al., 2014; Choo et al., 2015;
Thomas et al., 2015; Gerasimidis et al., 2016; Gohl et al., 2016;
Costea et al., 2017).

In order to corroborate and validate which aspects of the
microbiome associate with health and disease, results and
conclusions need to be comparable across studies. Variability
in methodology, however, can potentially change the detected
community structure and influence the interpretation of the
results. Such variability constitutes a serious obstacle to
replicating study findings or drawing conclusions beyond the
scope of each individual study. Methodological variability can
be introduced at all stages of a microbiome research project,
including sample collection, transport, processing, and storage;
DNA extraction; the region and primers used for amplification;
data processing; analysis methods; and interpretation of results
(Santiago et al., 2014; Wesolowska-Andersen et al., 2014;
Choo et al., 2015; Thomas et al., 2015; Gerasimidis et al.,
2016; Gohl et al., 2016; Shaw et al., 2016; Song et al., 2016;
Costea et al., 2017).

Prior studies have evaluated how methodological differences
influence the results of microbiome assays (Thomas et al.,
2015). Several studies based on 16S amplicon sequencing of
stool specimens have shown that community composition
is typically robust to extraction method (Santiago et al.,
2014; Gerasimidis et al., 2016; Gohl et al., 2016; Shaw
et al., 2016; Costea et al., 2017). Conflictingly, a number
of studies focusing on shotgun metagenomics assays report
that apparent taxon relative abundances were sensitive
to the method used for DNA extraction (Wesolowska-
Andersen et al., 2014; Jones et al., 2015; Wu et al., 2019).
Multicentre studies assessing technical variability of 16S
rRNA sequencing for microbiome analysis have reported
its contribution to be significant, despite high intra-center
reproducibility (Hiergeist et al., 2016). To address a lack
of standard protocols, initiatives including International
Human Microbiome Standards (IHMS) and the Microbiome
Quality Control (MBQC) project have been developed to
promote reproducibility in microbiome research and help
inform study design to reduce inter-study technical variability
(Santiago et al., 2014; Sinha et al., 2015; Hayakawa et al.,
2018). Their findings indicate that the choice of DNA
extraction protocol and amplicon primer sets substantially
influence inter-laboratory variability (Jones et al., 2015;
Sinha et al., 2015; Hayakawa et al., 2018). Other studies
have also shown that both amplicon-based microbiome
surveys and shotgun metagenomics methodologies suffer
from biases due to a wide range of factors, including primer
bias and library preparation (Jones et al., 2015; Sinha et al.,
2015; Gohl et al., 2016; Hayakawa et al., 2018). As well,
the choice of bioinformatic processing pipeline used to
convert DNA sequences into count tables can impact the
characterization of the microbial community (Golob et al.,
2017). Therefore, development of best practices for human
microbiome research will allow for increased reproducibility and
comparability among studies.

In the present study, three participating laboratories
performed 16S rRNA gene amplicon sequencing of matched
samples of intestinal mucosal microbiota from 32 individuals
using the methods favored by each lab. We assessed the effects
of technical variability at three key stages of data generation: (1)
genomic DNA extraction, (2) amplification and sequencing of
the 16S rRNA gene hypervariable region, and (3) bioinformatic
processing of reads into count tables. We report our findings
here along with a discussion of the implications our results have

Frontiers in Microbiology | www.frontiersin.org 2 August 2020 | Volume 11 | Article 2028

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-02028 August 20, 2020 Time: 20:6 # 3

Szamosi et al. Gut Microbiome Inter-Laboratory Variation Study

on conducting multicentre studies of the gut microbiome in
gastrointestinal health and disease.

MATERIALS AND METHODS

Study Design
The Research Ethics Board at the University of Manitoba
approved this study.

The datasets generated from 16S rRNA gene amplicon
sequencing experiments must, by necessity, proceed though
stages of DNA extraction (E), sequencing (S), and bioinformatic
processing (P). To investigate the effect of intercentre technical
variability introduced at each of these stages, the extracted
DNA, sequence data, and bioinformatically processed data
independently generated at each study center must at each stage
be redirected to a single, designated lab and then proceed through
the remaining stages. This is reflected in our methodological
study design, which we describe here and represent schematically
in Figure 1.

Three Canadian research laboratories participated in this
assessment: Center for The Analysis of Genome Evolution
and Adaptation at the University of Toronto in Toronto, ON
(UT); Public Health Agency of Canada’s National Microbiology
Laboratory in collaboration with the University of Manitoba in
Winnipeg, MB (UM); and the Farncombe Metagenomics Facility
and Surette laboratory at McMaster University in Hamilton,
ON (MM). Thirty-two participants were recruited for this
study. Twenty-two participants had inflammatory bowel disease
(IBD) – Crohn’s disease (CD; n = 12) or ulcerative colitis (UC;
n = 10). Ten were non-IBD controls – irritable bowel syndrome
(n = 2), collagenous colitis (n = 1), or healthy (n = 7). The
ten non-IBD controls were grouped together for the purpose of
this analysis. Tissue from six adjacent biopsy specimens were
collected from the rectum and the ileum (or cecum) of each
subject (N = 384). All biopsies were placed in a cryovial and
immediately stored in liquid nitrogen until same-day transfer to
−80◦C. Two replicates from each biopsy site were pooled and
shipped on dry ice to each of the three participating labs for
DNA extraction (UME, UTE, MME), sequencing (UMES, UTES,
MMES), and bioinformatic processing (UMESP, UTESP, MMESP)
to produce amplicon sequence variant (ASV) or operational
taxonomic unit (OTU) count tables using each lab’s independent
protocols without regard for the methods used by the other
participating labs. To evaluate variability introduced at the DNA
extraction step, aliquots of extracted DNA from UM and UT
were shipped to MM, where they were amplified, sequenced, and
data analyzed by the MM laboratory (UMEMMSP, UTEMMSP).
To assess the variability introduced at the data processing step,
sequence data from all centers were also processed together into
a single taxon count table by MM (UMESMMP, UTESMMP).
Samples that stayed at a single institution from one phase of
processing to the next were not subjected to “mock shipping” of
any kind. Finally, all taxon count tables were analyzed separately
and together to evaluate the degree of variability introduced in
each of the extraction, sequencing, and bioinformatic processing
steps. An overview of the data sets can be found in Table 1.

Genomic DNA Extraction
University of Toronto
Biopsy specimens were thawed on ice and genomic DNA was
extracted using the MO BIO PowerSoil DNA Isolation Kit
(Qiagen) according to manufacturer’s instructions. The samples
were homogenized in Power Bead tubes for 3 min in a bead beater
and DNA was eluted in 100 µL of elution buffer.

University of Manitoba
Biopsy specimens were thawed at room temperature. Genomic
DNA was isolated using the MO BIO PowerSoil DNA Isolation
Kit with Sunagawa modifications (Baker and Kellogg, 2014), as
follows: To increase the yield and quality of DNA preparations,
we modified the manufacturer’s instructions by: (1) adding
0.19 µL lysozyme (Epicenter; final: 10 U µL-1) to the Bead
Solution/sample mixture, followed by an incubation of 10 min
at room temperature; (2) adding 25 µL proteinase K (Invitrogen;
final: ∼0.8 mg mL-1) to the lysozyme-treated mixture, followed
by an incubation for 60 min at 65◦C; and (3) adding 400 mg of
each 0.1 and 0.5 mm zirconia/silica beads before samples were
homogenized by bead beating.

McMaster
Genomic DNA was isolated according to the method described
in Stearns et al. (2015), with modifications. Briefly, each biopsy
was transferred to a screw cap tube containing 2.8 mm ceramic
beads, 0.1 mm glass beads, GES solution, and sodium phosphate
buffer. Samples were mechanically lysed in a homogenizer
for 3 min at 3000 rpm for 2 cycles. Samples were then
incubated at 37◦C for 1 h after the addition of lysozyme and
RNaseA (mutanolysin was excluded), followed by a second
incubation at 65◦C for 1 hr after the addition of SDS, NaCl
and Proteinase K. Samples then underwent centrifugation at
13000 rpm for 5 min. The supernatant was then added to equal
volume of phenol:chloroform:isoamyl for further extraction and
purification. The samples were vortexed and again centrifuged at
13000 rpm for 10 min. The top aqueous layer was then mixed
with 200 µL of DNA binding buffer as part of the Zymo DNA
Clean and Concentrator-25 kit. The DNA was purified as per the
kit instructions and finally eluted with 50 µL of ultrapure water.

Library Preparation and Sequencing
University of Toronto
The V4 hypervariable region of the 16S rRNA gene was amplified
using a universal 515F (GTGCCAGCMGCCGCGGTAA)
forward sequencing primer and a uniquely barcoded 806R
(GGACTACHVGGGTWTCTAAT) reverse sequencing primer
to allow for multiplexing (Caporaso et al., 2012). Amplification
reactions were performed using 12.5 µL of KAPA2G Robust
HotStart ReadyMix (KAPA Biosystems), 1.5 µL of 10 µM
forward and reverse primers, 9.5 µL of sterile water, and 1 µL
of DNA. The V4 region was amplified by cycling the reaction
at 95◦C for 3 min, 27 cycles of 95◦C for 15 s, 50◦C for 15 s,
and 72◦C for 15 s, followed by a 5-min extension at 72◦C. All
amplification reactions were done in triplicate, visualized on a 1%
agarose Tris/Borate/EDTA (TBE) gel, and then pooled to reduce
amplification bias. Pooled triplicates were quantified using the
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FIGURE 1 | Schematic of experimental design. Biopsies taken from 32 patients were sent to 3 centers for DNA extraction. DNA was independently sequenced,
extracted, and processed at each center and sent to McMaster (MM) for sequencing. FASTQ files were processed into OTU or ASV tables on site and sent to MM
for processing.

Qubit HS DNA kit and combined in equal concentrations. The
final library was gel purified on a 2% agarose tris-acetate-EDTA
(TAE) gel due to the presence of dual bands after amplification.
The gel-extracted library was then purified using 1.8× magnetic
Ampure XP beads and quantified. Approximately 7 pM of
the purified library pools and PhiX spike-in control DNA (at
5%) were loaded on to the Illumina MiSeq for sequencing,
according to manufacturer instructions (Illumina, San Diego,

CA, United States). Sequencing was performed on 64 samples in
a single run using the V2 chemistry (300 cycles; 2× 150 bp).

University of Manitoba
Templates were prepared following the Illumina protocol
for 16S rRNA gene amplicons for the MiSeq platform
with modifications described elsewhere (Alfa et al., 2018).
Briefly, the 16S rRNA gene V4 region was amplified using
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TABLE 1 | Dataset description.

Data Seta,b DNA Extraction Sequencing Bioinformatic Processing SampleCount MinDepth MaxDepth ASV/OTUcCount

Unpooled MMESP MM MM MM 59 1,029 32,305 400

UTESP UT UT UT 64 1,022 167,922 757

UTESMMP UT UT MM 58 1,125 114,877 396

UTEMMSP UT MM MM 61 2,745 33,415 403

UMESP UM UM UM 64 5,480 273,886 289

UMESMMP UM UM MM 62 1,963 103,781 418

UMEMMSP UM MM MM 60 1,445 24,413 411

Pooled PE All MM MM

PS All All MM

PP All All All

aE, Extraction; S, Sequencing; P, Bioinformatic Processing. bPE, pooled post-extraction; PS, pooled post-sequencing; PP, pooled post-bioinformatic processing. All
pooled data sets consist of samples randomly drawn from unpooled data sets. cASV, Amplicon Sequence Variant; OTU, Operational Taxonomic Unit.

primers 515fXT (GTGBCAGCMGCCGCGGTAA) and
806rXT (GGACTACHVGGGTWTCTAAT). Amplification
was performed in triplicate using 12.5 µL of KAPA2G Robust
HotStart ReadyMix (KAPA Biosystems), 5 µL each of 1.0 µM
forward and reverse primers, 9.5 µL of sterile water, and 2.5 µL
of DNA. The V4 region was amplified by cycling at 95◦C for
3 min, 25 cycles of 95◦C for 30 s, 55◦C for 30 s, and 72◦C for
30 s, followed by a 5-min extension at 72◦C. Triplicate reactions
were pooled and purified by AMPureXP. Quality control,
quantification, normalization, pooling, and sequencing of the
library was performed according to Illumina instructions, and
approximately 11 pM of the pools and 37.5% PhiX spike-in
control DNA were used for sequencing using the V3 chemistry
(600 cycles; 2 × 300 bp). A single Illumina MiSeq run was
performed on 65 multiplexed samples including a no-template
control (NTC) and mock community of known composition
(HM-782D; BEI Resources, Manassas, VA, United States).

McMaster University
Purified DNA was used to amplify the hypervariable regions
V3 and V4 of the 16S rRNA gene using a two-stage nested
PCR approach. Initially the 8f (AGAGTTTGATCCTGGCTCAG)
to 926r (CCGTCAATTCCTTTRAGTTT) region of the 16S
rRNA gene was amplified using 100 ng of template with 1
unit of Taq, 1× buffer, 1.5 mM MgCl2 (ThermoFisher Taq
DNA recombinant kit), 0.4 mg/mL bovine serum albumin (BSA;
Sigma), 0.2 mM dNTPs (New England BioLabs), and 10 pM of
each primer. The reaction was carried out at 98◦C for 5 min
followed by 15 cycles of 98◦C for 30 s, 56◦C for 30 s and
72◦C for 60 s, with a final extension of 72◦C for 10 min. The
triplicate reaction was then recombined and used as template
in the second stage of PCR. A total of 3 µL of the first pooled
reaction was used as template for PCR using 1 unit of Taq,
1× buffer, 1.5 mM MgCl2, 0.4 mg/mL BSA, 0.2 mM dNTPs,
and 5 pM of 341F (CCTACGGGAGGCAGCAG) and 806R
(GGACTACHVGGGTWTCTAAT) Illumina adapted primers, as
described elsewhere (Bartram et al., 2011). The reaction was
carried out at 98◦C for 5 min followed by 25 cycles of 98◦C for
30 s, 50◦C for 30 s and 72◦C for 30 s, with a final extension of
72◦C for 10 min. The resulting PCR products were visualized

on a 1.5% agarose gel. Positive amplicons were normalized using
the SequalPrep normalization kit (ThermoFisher) and sequenced
with the Illumina MiSeq platform across seven runs. Spike-in was
either 5% PhiX or 1% PhiX plus 2.5–19% bacterial genomic DNA
from other experiments.

A comparison of the extraction, library preparation,
and sequencing methods among the three centers can be
found in Table 2.

Bioinformatic Processing
University of Toronto
The UNOISE pipeline, available through USEARCH v.10.0.240
(Edgar, 2010, 2013; Bartram et al., 2011), was used to generate an
OTU count table. The last base was removed from all sequences.
Paired-end sequences were merged using – fastq_mergepairs with
a – fastq_maxee of 1.0 to remove poor quality reads (Edgar,
2016). Reads were quality trimmed using – fastq_filter with a
– fastq_maxee of 0.5. Merged sequence pairs shorter than 233
base pairs were discarded. The remaining merged pairs were de-
replicated. Sequences were denoised and chimeras were removed
using the unoise3 command. Assembled sequences were then
mapped back to the chimera-free, denoised sequences at 97%
identity to generate OTUs. Taxonomy assignment was performed
using the SINTAX algorithm implemented in USEARCH with
the UNOISE compatible Ribosomal Database Project v.16
database (RDP) (Wang et al., 2007) at minimum 80% bootstrap
confidence threshold. OTU sequences were aligned using the
PyNast aligner in QIIME (Caporaso et al., 2010). Sequences that
did not align were discarded.

University of Manitoba
Amplicon data was processed using the mothur software suite
v.1.38.0 (Schloss et al., 2009). Paired-end reads (2 × 300 bp)
were assembled into contigs using Needleman–Wunsch pairwise
alignments and V4 amplicon primers were removed. Contigs
were removed if they were >275 bp in length, contained
homopolymers longer than 8 bp, or contained any ambiguous
base calls or chimeric artifacts (via UCHIME) (Edgar et al.,
2011). A custom reference alignment specific to the sequenced
16S rRNA gene V4 region was created by trimming the full
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TABLE 2 | Extraction and sequencing methods.

Step UT UM MM

Extraction Mechanical
lysis

MO BIO PowerSoil DNA
Isolation kit standard
protocol

MO BIO PowerSoil DNA
Isolation kit + zirconia/silica
beads during
homogenization

Bead-beating with ceramic
and glass beads in
GES + sodium phosphate

Enzymatic
lysis

MO BIO PowerSoil DNA
isolation kit + lysozyme
incubation + proteinase K

Lysozyme and RNaseA

Incubation SDS, NaCl, Proteinase K

Extraction MO BIO PowerSoil DNA
isolation kit

-centrifugation
-phenol, chloroform, isoamyl

Purification Zymo DNA Clean and
Concentrator-25 kit

Amplification Primers 515F and 806R primers; V4
region

515fXT and 806rXT
primers; V4 region

Nested PCR:
8f and 926r primers [first
reaction (1)] and 341f and
806r primers; V3-V4 region
[second reaction (2)]

PCR Mix −12.5 µL KAPA2G Robust
HotStart ReadyMix (KAPA
Biosystems)

−1.5 µL of 10 µM each
primer

−9.5 µL of sterile water
−1 µL of template DNA

−12.5 µL of KAPA2G Robust
HotStart ReadyMix (KAPA
Biosystems)

−5 µL of 1.0 µM each primer
−9.5 µL of sterile water
−2.5 µL of template DNA.

The V4 region was
amplified by cycling at

−1 unit of Taq, 1× buffer,
1.5 mM MgCl2
(ThermoFisher)

−0.4 mg/mL bovine serum
albumin

−0.2 mM dNTPs
−10 pM of each primer (1) or

5pM of each primer (2)
−100 ng of template DNA (1)

or 3 µL of first reaction
product (2)

PCR
Cycles

−3 min @ 95◦C
−27×
−15 s @ 95◦C
−15 s @ 50◦C
−15 s @ 72◦C
−5 min @ 72◦C.

−3 min @ 95◦C
−25×
−30 s @ 95◦C
−30 s @ 55◦C
−30 s @ 72◦C
−5 min @ 72◦C

−5 min @ 98◦C
−15 × (1) or 25 × (2)
−30 s @ 98◦C
−30 s @ 56◦C
−60 s (1) or 30 s (2) @ 72◦C
−10 min @ 72◦C

Library
Prep and
Sequencing

Purification
and
Normalization

-gel purification on 2% TAE
−1.5× Ampure XP magnetic

beads

-purified by AMPure XP
-quantitated with PicoGreen

and pooled in equimolar
amounts

SequalPrep normalization
kit (ThermoFisher)

Sequencing -Illumina MiSeq; V2 chemistry
−5% PhiX spike-in
−2 × 150bp

-Illumina MiSeq; V3 chemistry
−37.5% PhiX spike-in
−2 × 300bp

-Illumina MiSeq; V2 chemistry
-spike-in either 5% PhiX alone

or 1% PhiX and 2.5% –
19% bacterial genomic
DNA

−2 × 250bp

length 16S rRNA gene SILVA v.128 reference alignment to the
region of interest and aligning contigs to the trimmed reference
database (Pruesse et al., 2007); contigs aligning outside of the 16S
rRNA gene V4 region were removed. To account for sequencing
error, contigs that differed by a maximum of 2 bp were
clustered together and considered the same sequence. The co-
sequenced mock community was selected from the data to assess
sequence error rates from the Illumina MiSeq run. The mock
community was excluded from downstream analyses. Taxonomic
classification was performed with the mothur software suite (Cole
et al., 2009) using a naive Bayesian classifier implementing the
k-nearest neighbor algorithm adapted from Wang et al. (2007)
with the RDP v.16 training set (Cole et al., 2009) at 80% bootstrap
confidence. Sequences classified as unwanted lineages, such as

chloroplast, mitochondria, archaea, eukaryota, or unknown, were
subsequently removed. Sequences were binned into species-
level OTUs using the average neighbor algorithm at a ≥97%
sequence similarity. The OTUs were taxonomically classified
using the RDP reference database with an 80% minimum
bootstrap confidence threshold.

McMaster University
Cutadapt v.1.14 (Martin, 2011) was used to filter and trim adapter
sequences and PCR primers from the raw reads using a quality
score cut off of 30 and a minimum read length of 100 bp. After
trimming, the reverse Illumina reads were too short to merge with
the forward reads, so only the forward reads, corresponding to
the V4 region, were used. Sequence variants were then resolved
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from the trimmed raw reads using DADA2 (Callahan et al., 2016)
as follows: DNA sequences were filtered and trimmed based on
the quality of the reads for each Illumina run separately, error
rates were learned separately for each run, and sequences were
denoised to produce ASV count tables.

The sequence variant tables from the different Illumina
runs were merged to produce a single ASV table. Bimeras
were removed and taxonomy was assigned using the DADA2
implementation of the RDP classifier against the SILVA v.1.2.8
database (Pruesse et al., 2007), at 50% bootstrap confidence.

DADA2 was also used to bioinformatically process the
sequence data generated from the UM and UT study centers. The
FASTQ files generated at each study center were merged together
to create three combined datasets (UMS, UTS, and MMS). Primer
sequences were removed as necessary using Cutadapt. Merged
and trimmed reads were then used as input into DADA2. The
MMS sequences were trimmed to the same length and region as
the UTS and UMS sequences using DADA2 after denoising so the
ASV tables could be merged.

Samples sequenced at UT were processed as paired-end
sequences with filterandTrim() cutoffs of length = (150,150),
maxEE = (2,5), and q = 11. Samples sequenced at UM were
processed as paired-end sequences with filterandTrim() cutoffs
of length = (150,150), maxEE = (2,5), and q = 11. Samples
sequenced at MM were processed as single-end sequences using
only R1, since the reverse read was of too poor quality to use.
The filterandTrim() cutoffs were length = 220, maxEE = 2, and
q = 25. After running DADA2 separately for each Illumina run,
the reverse complement was taken of sequences from UT and UM
to match sequences from MM, and all sequences were trimmed to
a length of 220 bp. ASVs were estimated per-sample and merged.

Once ASV tables were generated for each study center,
the tables were merged, filtered for chimeras, and taxonomies
assigned as described above. Sequence variants were filtered to
remove all non-bacterial reads (this includes any reads assigned
to kingdom Eukaryota, those lacking a phylum assignment, and
those assigned to family Mitochondria). We also removed any
sequence variants present only once in the dataset.

After this filtering, samples with fewer than 1,000 reads were
eliminated and sequence variants were re-filtered to remove any
variants whose mean abundance across the whole dataset was
less than 0.01%.

Final Datasets
Our experimental design generated seven unpooled datasets
(Table 2 and Figure 1). Of these seven, three were independently
extracted, sequenced, and bioinformatically processed at each
study center (UMESP, UTESP, MMESP), so that they differed
at all three levels of variability. Two were generated from
DNA independently extracted and sequenced from UM and
UT, respectively, and then processed at MM (UMESMMP,
UTESMMP), so that they, together with MMESP, differed at
the levels of extraction and sequencing, but not bioinformatic
processing. Finally, two were generated from DNA independently
extracted at UM and UT, respectively, and then sequenced and
processed at MM (UMEMMSP, UTEMMSP), so that they, together
with MMESP, differed at the level of extraction only. Each of these

seven datasets was analyzed separately, and the comparison of
these analyses is intended to simulate comparison of the results
of different studies, or of data produced by different studies.

We additionally constructed three sets of pooled datasets.
Samples were randomly drawn from the seven unpooled
datasets such that each sample was represented once in each
pooled dataset, and the two samples from a given patient
both originated from the same unpooled dataset. The pooled-
extraction (PE) dataset included samples drawn from the
UMEMMSP, UTEMMSP, and MMESP datasets. The pooled-
sequencing (PS) dataset included samples drawn from the
UMESMMP, UTESMMP, and MMESP datasets. Finally, the
pooled-processing (PP) dataset included samples drawn from the
UMESP, UTESP, and MMESP datasets. We randomly generated
each type of pooled dataset 1,000 times in order to get a range
of estimates for our parameters of interest. These pooled datasets
are intended to assess the validity of co-analysis of samples
originating from different studies. The PE and PS datasets were
combined at the level of ASVs while the PP dataset was combined
at the level of genus.

Finally, we constructed two supersets of all the samples from
all seven unpooled datasets. These were used only to generate
the ordinations and UPGMA trees shown in Figure 2. The
first superset contained all samples bioinformatically processed
at McMaster (all datasets except UMESP and UTESP) and was
combined at the ASV level (Figures 2A,B), and the second
superset contained the samples that differed at all three levels of
variation (UMESP, UTESP, and MMESP) and was combined at the
genus level (Figures 2C,D).

Statistical Analysis
All downstream analysis was conducted in the R v.3.4.4 statistical
programming language (R Core Team, 2018). We curated the
data and generated plots using phyloseq v.1.22.3 (McMurdie
and Holmes, 2013) and the following tidyverse (Wickham,
2017) packages: dplyr v.0.7.6, tidyr v.0.8.1, rlang v.0.2.1, and
ggplot2 v.3.0.0 (Wickham, 2009). Color palettes used in the
figures were adapted from RColorBrewer v.1.1.2 (Neuwirth, 2014)
with additional colors generated using the I Want Hue color
tool (Médialab).

To visualize sample distances and identify sample clustering,
we calculated and ordinated Bray–Curtis dissimilarities using
phyloseq. Principal coordinate analysis (PCoA) plots were
generated using phyloseq and ggplot2. Unweighted pair group
method with arithmetic mean (UPGMA) trees based on Bray–
Curtis dissimilarities were generated using the ape v.5.2 (Paradis
and Schliep, 2018) package and the hclust() function in R.
Trees were visualized using the stringi v.1.2.3 (Gagolewski,
2018) package in R and the Interactive Tree of Life (iTOL) v.3
(Letunic and Bork, 2016).

The variability in the microbiota attributable to study center
(at the stages of extraction, sequencing, and bioinformatic
processing), diagnosis, and patient was evaluated by
PERMANOVA using Bray–Curtis dissimilarities implemented
in the adonis() function in vegan v.2.5.2 (Dixon, 2003;
Oksanen et al., 2018; Figure 3) as follows: adonis(bray_dist∼
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FIGURE 2 | Samples independently extracted and sequenced at each study center, bioinformatically processed at McMaster, and visualized together as (A) PCoA
plots and (B) UPGMA trees. Samples independently extracted, sequenced, bioinformatically processed at each study center, and visualized as (C) PCoA plots and
(D) UPGMA trees based on Bray-Curtis dissimilarity. Tree branches are colored according to patient. Diagnosis is indicated by the inner colored ring. Dataset is
indicated by the outer colored ring.

Centre1
+ Diagnosis + Patient, by = “margin”). Bray–Curtis

dissimilarities were calculated based on ASV or OTU relative
abundance (McMurdie and Holmes, 2014) for all datasets
except the pooled PP datasets. Because independently generated
OTUs cannot be compared, Bray–Curtis dissimilarities in the
pooled PP datasets were calculated based on genus-level relative
abundances instead.

Differential abundances among the three diagnosis
groups (UC, CD, and non-IBD) of the 25 genera with
the highest mean abundance were assessed on raw counts
using a negative binomial linear mixed model implemented
in glmmTMB v.0.2.2 (Brooks et al., 2017) with a random
intercept for patient as follows: glmmTMB(taxon_abundance∼
Diagnosis + offset(log(libsize)) + (1| Patient),

1If samples were processed in different locations

family = “nbinom1”). We corrected for multiple tests using
a false discovery rate (FDR) of 5% and n = 25 (for the 25 genera).

RESULTS

Ordination of All Samples
In the ordination of the superset of all five unpooled datasets
bioinformatically processed at McMaster, there was no apparent
clustering by extraction or sequencing method in the PCoA plot
(Figure 2A), and the UPGMA tree showed strong clustering by
patient only (Figure 2B).

The ordination of the superset of the three datasets
bioinformatically processed at different study centers showed
strong clustering by study center (Figure 2C). The MMESP
samples separated from the UTESP and UMESP samples on the
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FIGURE 3 | R2 values associated with center, diagnosis, and patient in all 7 unpooled datasets and 3 pooled datasets. PE, Post-Extraction; PS, Post-Sequencing;
PP, Post-Processing.

first axis (27%) and the UTESP and UMESP samples separated
from each other on the fourth axis (8%). This clustering is
also visible in the UPGMA tree constructed for these samples
(Figure 2D), where patient clusters are stratified across study
centers. The separation by center appears to arise from multiple
steps in the bioinformatic pipeline, and not simply from the
fact that the different centers used different databases to assign
taxonomy. Figure S2 shows the ordination and clustering
of this same superset after re-assigning taxonomy to the
UTESP data using the same database as MMESP (SILVA). The
separation between UTESP and MMESP samples is weaker than
in Figures 2C,D, but still largely maintained.

Comparison of Within-Center Analyses
In order to explore the validity of comparing results among
studies, we analyzed each unpooled dataset individually
and compared the results. Specifically, we conducted
PERMANOVA tests and tests of differential abundance on
the seven unpooled datasets.

The results of the PERMANOVA test were broadly consistent
across all unpooled datasets, with R2 values for diagnosis ranging
from 3.7% (UMESP) to 8.1% (UTESMMP), with a mean of 6.1%.
The R2 values for patient ranged from 89% (MMESP) to 91%
(UTESP), with a mean of 89%. All p-values associated with
diagnosis and patient were <0.001 (Figure 3 “Within Center”).

Choosing the 25 genera with the highest mean abundance
in each unpooled dataset yielded 47 total genera. The five
datasets that were bioinformatically processed at MM yielded
27 distinct genera, of which 16 were present in at least three

of the five datasets. Although the differential abundance among
diagnoses was not statistically significant in any of the top
25 taxa in any of the datasets when assessed by generalized
linear mixed model, the estimated fold changes and confidence
intervals were similar among datasets (Figure 4). The 25 most-
abundant genera from three datasets generated at the different
study centers (MMESP, UTESP, and UMESP) yielded 44 distinct
genera, of which 16 were present in at least two of the three
datasets. These 16 genera showed similar estimated fold changes
(Supplementary Figure S1).

Evaluation of Intracentre Variability
We conducted PERMANOVA tests on all 3,000 pooled datasets
(1,000 each of PE, PS, and PP). The mean R2 value associated
with diagnosis in the PE datasets was 6.3%, with 95% of replicates
yielding R2 values between 5.3 and 7.7%. The mean R2 of
diagnosis was 6.1% (5.0–7.3%) in the PS dataset, and 3.7% (2.3–
5.6%) in the PP dataset. The R2 values associated with patient
were 77% (74–81%) in the PE dataset, 76% (73–80%) in the PS
dataset, and 61% (55–67%) in the PP dataset. Finally, the R2 value
associated with study center was 12% (9–15%) in the PE datasets,
13% (10–16%) in the PS datasets, and 31% (25–37%) in the PP
datasets (Figure 3).

To assess the robustness of our taxon model estimates to this
site variability, we used a single, randomly chosen replicate of
each of the PE and PS datasets. We did not attempt this with
a PP dataset because it did not seem plausible that any study
might attempt to test taxon differential abundance on a dataset
that had not been bioinformatically processed together. As shown
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FIGURE 4 | Estimated log2 fold-changes (with 95% confidence intervals) of the 16 most-common genera for all three diagnosis pairs in all 5 MMp datasets and the
pooled PE and PS datasets.

in Figure 4, the fold-change estimates in the pooled datasets can
show higher variability than those from the original datasets but
still demonstrate good agreement with those results.

DISCUSSION

In this study, we aimed to answer two distinct yet related
questions: First, can different microbiome studies be
meaningfully compared when they used different DNA
extraction, sequencing, and bioinformatic processing methods?
Second, can a single multicentre study be valid if the different
centers use different methods at each step? We kept the extracted
biopsies as similar as possible, in order to focus narrowly on the
variation introduced by laboratory and bioinformatic methods.

We found that differences in our DNA extraction methods
did not substantially affect the characterization of a microbial
community (Figures 2A,B). Both our observed weak association
with diagnosis and strong association with patient were robust

to variability in extraction methods. Our findings are consistent
with prior studies, although there is no clear consensus in the
literature on the contribution of different extraction methods
to technical variability. Extractions performed on fecal samples
using the same methodology but on different dates or by different
people have little apparent effect on the resultant 16S rRNA gene
sequence data (Shaw et al., 2016). Comparisons of chaotropic,
phenol/chloroform, and kit-based extraction methods of fecal
samples similarly appear not to significantly contribute to
observed technical variability in the resultant 16S rRNA gene
sequence data (Gerasimidis et al., 2016). Extraction methods
have, however, been reported to contribute significantly to
variability in taxonomic classification from metagenomic data
(Wesolowska-Andersen et al., 2014). Across all such studies,
including our multicentre study, the contribution from extraction
method to total variability was substantially outweighed by
the biological variability targeted by the respective studies
(Jones et al., 2015; Sinha et al., 2015; Gohl et al., 2016;
Hayakawa et al., 2018).
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Technical variability arising from variation in the methods
used for 16S rRNA gene amplicon-based sequencing can be
significant. Sources of this variability include amplicon primer
bias (Sinha et al., 2015; Gohl et al., 2016; Teng et al., 2018),
methods for library preparation (Jones et al., 2015; Gohl et al.,
2016; Costea et al., 2017), and the 16S rRNA gene hypervariable
region targeted for sequencing (Lozupone et al., 2012; Santiago
et al., 2014; Hayakawa et al., 2018; Teng et al., 2018). In our
study, two centers (UM and UT) independently chose to target
the V4 hypervariable region, while the third (MM) targeted the
longer V34 region. In either case, a diverse set of approaches were
applied in the sequencing library preparation. The contribution
of sequencing method to technical variability was detectable in
our study, although, similar to our findings for the effect of
extraction, its overall contribution to observed variability did not
obscure the biological variable of interest.

We found that the biggest source of multicentre variation,
and the one most likely to interfere with effective comparison
of results or co-analysis of samples from different sources, was
at the level of bioinformatic processing. The diversity of the
various approaches chosen by each center was itself notable, with
methods varying across all steps in the processing, including
read trimming and cleaning, clustering or denoising methods,
taxonomic assignment methods, and choice of taxonomic
database. Although quality control and best practices were
applied at each center for the bioinformatics processing of their
datasets, there was little consistency across centers; this resulted
in high internal reproducibility within each study center, but
introduced significant variability that could have an appreciable
impact on the interpretation of the resultant data, which we
characterize in more detail below.

Comparison of Individual Studies
We found that at the community level (Bray–Curtis
PERMANOVA), unpooled results were comparable for both
predictor variables. The percentage of variation attributed to
diagnosis was small yet similar across study centers (3.7–8.1%),
and the percent variation attributed to patient was large and
similar across study centers (87–92%; Figure 3). This held true
for all the examined stages of potential variability; however, the
weaker variable (diagnosis) did show a larger change among
single-method datasets when they varied in their bioinformatic
processing (Figure 3, dark points).

When assessing taxon differential abundance, we found that
estimated effect sizes (log2 fold-change) were comparable among
unpooled datasets that varied in their extraction and sequencing
methods (Figure 4); however, comparison among datasets that
used different bioinformatic processing was less straightforward.
No taxa present in the top 25 genera were common to all three
datasets. Those that were present in the top 25 genera of at least
two datasets did tend to have similar effect sizes (Supplementary
Figure S1), but there appears to be more variation than in the
datasets that used identical bioinformatic processing (Figure 4).

These results may help explain the many differences in
scientific reports of microbiome results in health and disease
from different laboratories. Although analyses are robust

to variation in wet-laboratory methodology, differences in
bioinformatic processing can generate different outcomes from
duplicate specimens. This is particularly true of findings of taxon
differential abundance, where even taxonomic classifications may
not be consistent among studies. Our findings underscore the
importance both of making raw sequence reads available and of
providing detailed informatics methods, so that other researchers
can more faithfully replicate them.

Multicentre Studies
When samples that were extracted and sequenced at multiple
centers were pooled and analyzed together (multi-method), the
assessments of community-level differences were similar to those
of the unpooled (single-method) datasets. The means of the
percent of variation explained by diagnosis in the multi-method
datasets were well within the range set by the single-method
datasets. The percent of variation explained by participant was
lower in the multi-method datasets than in the single-method
datasets, but since it was near 90% in the single-center datasets, it
is not surprising that it would drop when new potential sources
of variability were introduced; it remained large and statistically
significant in all PE and PS datasets. While the effect of center
could be detected in these multi-center datasets, it did not detract
substantially from our ability to detect either small or large
community-level patterns. The estimated effect sizes of taxon
differential abundances in the multi-center PE and PS datasets
were also similar to those of the single-center datasets (Figure 4).

In datasets where samples were bioinformatically processed
at multiple centers (PP), the effect on the output was more
noticeable. The effect of diagnosis was statistically significant in
all cases, but the mean diagnosis R2 value fell just at the bottom of
the range set by our unpooled datasets, and 52% of the R2 values
were lower than those estimated by any single-center analysis.
The effect of patient dropped by a proportionally similar amount
as in the PE and PS datasets, and the effect of center more than
doubled compared to the PE and PS datasets (Figure 3). Taxon
differential abundance could not be sensibly assessed in the PP
datasets since many high-abundance taxa were not consistent
from sample to sample.

These results support the validity of multi-center studies. We
find that researchers may be able to safely analyze data from
samples that were extracted and sequenced in different locations
using different protocols, as long as there is enough overlap in
the 16S rRNA gene hypervariable region sequenced that the data
can be informatically processed together. That said, pains should
always be taken to identify any methodological biases, and it is
ideal to use consistent protocols whenever possible. Additional
variation could also arise from the inclusion of different patient
populations at different centers, which was not assessed here.

CONCLUSION

Although the contributions of DNA extraction and sequencing
methods to variation were observable, we find that results can
be robust to the various extraction and sequencing approaches
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used in our study. Differences in data processing methods have a
larger impact on results, making comparison among studies less
reliable and the combined analysis of bioinformatically processed
samples nearly impossible. Our results highlight the importance
of making raw sequence data available to facilitate combined
and comparative analyses of published studies using common
data processing protocols. Study methodologies should provide
detailed data processing methods for validation, interpretability,
comparability, and reproducibility.
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