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Abstract

Genome-wide transcriptomic analyses have provided valuable insight into fundamental biol-

ogy and disease pathophysiology. Many studies have taken advantage of the correlation in

the expression patterns of the transcriptome to infer a potential biologic function of uncharac-

terized genes, and multiple groups have examined the relationship between co-expression,

co-regulation, and gene function on a broader scale. Given the unique characteristics of

immune cells circulating in the blood, we were interested in determining whether it was possi-

ble to identify functional co-expression modules in human immune cells. Specifically, we

sequenced the transcriptome of nine immune cell types from peripheral blood cells of healthy

donors and, using a combination of global and targeted analyses of genes within co-expres-

sion modules, we were able to determine functions for these modules that were cell lineage-

specific or shared among multiple cell lineages. In addition, our analyses identified transcrip-

tion factors likely important for immune cell lineage commitment and/or maintenance.

Introduction

The human immune system protects us from microbes (bacteria, viruses, fungi, and parasites)

that penetrate the physical and chemical barriers of the body. It fulfills surveillance functions in

order to detect and eliminate aberrant cells that result from infection, cancer, and senescence.

In contrast, the immune system is also at the heart of pathogenic syndromes and chronic dis-

eases that involve virtually all organ systems (e.g. cardiovascular, gastrointestinal, respiratory,

musculoskeletal), and are associated with significant morbidity and mortality [1–5].

Given the central importance of the immune system in human health and disease, extensive

work by numerous research groups over the past 100+ years has provided a detailed functional

understanding of the cells and organs within the immune system. This includes how the
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multiple different cell populations, which make up the complex immune system, differentiate

from a common pluripotent progenitor cell, how different cells communicate through an exten-

sive system of cytokines, chemokines, and associated receptors, and how signaling pathways

can regulate cell response to various stimuli [6–8]. This functional understanding has been

made possible by a combination of human and animal model systems, sensitive and specific

reagents, such as antibodies directed against cell surface and intracellular proteins, and the

development of technological platforms to isolate and study-specific cell populations based on

multi-parameter flow cytometry, fluorescence-activated cell sorting, and mass cytometry [5, 9].

Genome-wide transcriptomic-based approaches have been instrumental in the identification

of molecular classifiers of leukemias, interferon and granulopoiesis signatures in the blood of

autoimmune patients, cytokine response pathways of T cells in psoriasis and the activation of

macrophages, to name a few [10–12]. Transcriptomic analyses have also been employed to per-

form surveys of the different cell populations within the myeloid and lymphoid lineages of the

mouse immune system in different contexts (e.g. age, differentiation and activation states, tissue

location) [13, 14]. More recently, the use of single-cell RNA sequencing to evaluate the tran-

scriptome has enabled the identification of previously unrecognized rare cell subsets of the

human immune system [15–18]. Together, these studies suggest that genome-wide transcrip-

tomics is an important tool for studying how the human immune system responds to different

conditions (e.g. stimuli, genotypes, health status, response to therapy).

The identification of gene sets that robustly represent different conditions has the potential

to become powerful biomarkers, even without fully understanding the impact of the observed

transcriptomic changes. The functional interpretation of changes in transcriptome between

different conditions, however, remains an important challenge. A common approach to

addressing this problem is to first perform gene co-expression analyses, for identifying gene

sets that potentially are involved in common biological functions, followed by annotation-

based analyses (e.g. enrichment of annotation terms, guilt-by-association) for attributing spe-

cific functions to the observed gene sets [19–21]. The success of this approach depends on

numerous factors such as the complexity of the samples being tested, the true extent of the dif-

ferences in the transcriptomes between the different conditions, the degree of experimental

variability in the collection, processing, and sequencing of the samples [19–21].

In the current study, we were interested in testing this approach in the context of circulating

human immune cells because of the well-characterized and distinctive nature of the different

immune cells in terms of cell-specific markers (and thus genes expressed) and functions, as

well as the relative ease by which highly purified immune cell populations can be isolated from

peripheral blood. Specifically, we analyzed the transcriptomes of nine distinct immune cell

populations from the peripheral blood of twelve healthy volunteers using a combination of

global and targeted approaches to functionally annotate modules of co-expressed genes. We

were able to attribute functions to most of the modules that were either cell population-specific

or shared across more than one cell population. In addition, we identified TFs associated with

lymphoid vs. myeloid lineages, T and B cell fates, many of which were previously known to be

involved in lineage differentiation, as well as others that we propose as new candidates for hav-

ing a role in lineage commitment and/or lineage maintenance.

Materials and methods

Subject selection criteria, ethics committee approval, and blood sample

procedures

The project was submitted to and approved by the MHI Institutional Ethics Committee

«Comité d’éthique de la recherche et du développement des nouvelles technologies ».
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Volunteers were then solicited via postings across the Montreal Heart Institute (MHI) and

directed to the MHI Biobank Center for screening, informed consent form completion, and

venipuncture. To be selected, the following criteria were used: (1) adult males with no history

of (or ongoing) chronic inflammatory disease; (2) no current use of anticoagulants; (3) no use

of oral steroids or cyclosporine in previous four weeks; (4) no use of NSAIDs in previous three

days. After signing the informed consent form, volunteers were assigned a randomly generated

ID number by the MHI Biobank Center; they were then called for blood withdrawal according

to the availability of the cell sorter platform. The assigned ID number was provided with the

blood samples to ensure anonymity. We recruited 12 individuals over a period of nine months.

Researchers can request access to the individual-level data from the current study by contact-

ing the Montreal Heart Institute ethics committee at the following institutional email address:

cer.icm@icm-mhi.org.

Blood collection and cellular isolation

For lymphocytes and monocytes isolation, blood was collected in Vacutainer CPT Mononu-

clear Cell Preparation Tube—Sodium Citrate (BD Biosciences, San Jose, CA). Centrifugation

was performed according to the manufacturer’s instructions. Mononuclear cells were collected

and washed three times in saline buffer, then filtered through a 70um mesh cell strainer. The

cells were further purified with anti-CD14 coated microbeads using LS columns and the Quad-

roMACS separator stand (Miltenyi, Cambridge, MA), according to the manufacturer’s

instructions. Non-specific binding of antibodies was prevented on both CD14+ and CD14-

enriched fractions by using FcR blocking reagent (Miltenyi). A portion of each fraction was

used for immunophenotyping.

The CD14+ enriched mononuclear fraction was stained with a goat anti-mouse IgG2a anti-

body (Serotec, Kidlington, United Kingdom). CD14- enriched mononuclear fraction was

stained with antibodies against CD3 (clone UCHT1), CD4 (clone RPA-T4), CD8 (clone

RPA-T8), CD19 (clone HIB19), TCRγδ (clone B1) (Biolegend, San Diego, CA) and CD56

(clone B159, BD Biosciences). Monocytes, CD4+ T cells (CD3+CD4+CD19-TCRγδ-), CD8+ T

cells (CD3+ CD8+CD19-TCRγδ-), TCRγδ T cells (CD3+CD19-TCRγδ+), NK cells

(CD3-CD19-CD56+) and B cells (CD3-CD19+) were sorted on a FACSAria™ III cell sorter

(BD Biosciences) based on cell size, granularity, doublet exclusion, live/dead marker and sur-

face expression of targeted molecules. Purity was > 94% (median 98.1% with 97.3% and 98.9%

for the 1st and 3rd quartiles, respectively).

For neutrophil isolation, blood was collected in Vacutainer1 EDTA collection tubes (BD

Biosciences). CD15+ fraction was enriched with StraightFrom™ Whole Blood CD15 MicroBe-

ads using Whole Blood columns with the QuadroMACS separator (Miltenyi), according to the

manufacturer’s instructions. Non-specific binding of antibodies was prevented on the enriched

CD15+ fraction by using FcR blocking reagent (Miltenyi). Cells were stained for CD14 (clone

M5E2) and CD16 (clone 3G8) (Biolegend). Neutrophil population (CD14-CD16+) was sorted

on a FACSAria™ III cell sorter (BD Biosciences) based on cell size, granularity, doublet exclu-

sion, live/dead marker and surface expression of targeted molecules. Purity was> 99%.

Macrophage differentiation and activation

CD14+ enriched mononuclear cells were frozen in the vapor phase of liquid nitrogen until the

day of culture. After thawing, the cells were cultured at 37˚C 5% CO2 in RPMI 1640 medium

with GlutaMAX™, 10% heat-inactivated fetal bovine serum, 100 units/mL penicillin, 100 μg/

mL streptomycin (ThermoFisher Scientific, Mississauga, Canada) and 50ng/ml M-CSF (Milli-

pore, Etobicoke, Canada) for a total of 8 days, with media renewal every 2 days, to obtain
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macrophages. Activated macrophages were also generated by stimulating the macrophage cul-

tures with 1ug/ml LPS (Sigma, Oakville, Canada) during the last 24h of culture.

Immunophenotyping

Following FcR blocking reagent (Miltenyi) step, CD14+ and CD14- enriched mononuclear

cells were stained with antibodies described in S1 Table. In vitro generated macrophages were

blocked with FcR blocking reagent (Miltenyi) and stained with antibodies listed in S2 Table.

Cells were analyzed on a BD™ LSR II flow cytometer (BD Biosciences). Final immunopheno-

typing results were generated using FlowJo software (FlowJo LLC, Ashland, OR) according to

size, granularity, live/dead marker and surface expression of targeted molecules. Results are

summarized in S1 Fig.

RNA extraction and sequencing

The total number of samples obtained for each population from each individual is summarized

in S3 Table. Total RNA from all cell samples was isolated using a Qiagen RNeasy Plus Mini kit

(Qiagen, Toronto, Canada) with an additional step of RNase-free DNase set (Qiagen) DNaseI

digestion; quantification, as well as quality control, were performed on Agilent BioAnalyzer

2100 (Agilent, Santa Clara, CA) using an Agilent RNA 6000 Nano Kit, and aliquots for

sequencing were prepared and kept at -80˚C until further processing.

RNA sequencing was performed at McGill/Genome-Québec Innovation Center. Total

RNA was extracted and all, but one sample had RNA integrity number (RIN) greater than 8

(RIN ranged between 8.4 and 10; the one sample with RIN<8 was excluded). RNA samples

were transformed into barcoded DNA libraries using Truseq Stranded mRNA library prepara-

tion kits (Illumina, San Diego, CA). Paired-end sequencing, generating 2x100bp reads, was

performed on an Illumina HiSeq2000 with raw FASTQ sequences downloaded from the plat-

form’s server for local pre-processing and analysis.

Bioinformatic processing of sequence files

Raw FASTQ formatted sequence files were collected from the McGill/Genome-Québec Inno-

vation Center sequence service. Primary QC analysis was performed using FastQC (v0.10.1)

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc). Following a manual inspection

of all FastQC result files to check for low-quality samples, raw sequence files were trimmed of

low-quality bases from reads and removing low-quality reads altogether as well as removing

potential adapter contamination with Trimmomatic (v0.33) [22] using a modified adapter

FASTA file with the following parameters: ILLUMINACLIP with seed mismatches set to 2,

palindrome clip threshold set to 30 and simple clip threshold set to 15, TRAILING set to 20

and MINLEN set to 50. Quality- and adapter-trimmed FASTQ files were inspected again with

FastQC to confirm global quality.

Alignments were performed with TopHat 2 (v2.1.0) [23] using iGenome index and annota-

tion files built from build 38 of the human genome (Illumina). Subsequent filtering of the

aligned reads was done using SAMTools (v1.6) [24] to keep only properly-paired and single-

mapped reads in the final alignments. Summary statistics from all steps for each cell type are

shown in S3 Table.

For gene expression analysis, R/Bioconductor was used with a variety of additional analysis

modules. Alignment files were processed with easyRNASeq (v1.8.8) [25] to measure gene abun-

dance and create the gene expression matrix of raw read counts that was further processed

using edgeR (v3.12.1) [26, 27] and Limma (v3.26.9) [28]. edgeR package was used to generate

the expression count matrix and annotations with DGEList function and to filter out non- and
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low-expressed genes based on a cpm threshold. edgeR was also used to obtain per sample nor-

malization factors. The function voom from the Limma package was used to normalize data

from gene expression for library sizes scale with TMM factors and then to stabilize variance in

the data. The various cell types collected in the study have expression profiles (e.g. neutrophils)

with too much dissimilarity to allow for a normalization approach based on the hypothesis of

relatively similar expression, for example, the normalization by quantile (S2 Fig) [29].

Principal component and hierarchical clustering analyses

Analyses of transcriptomic data using Principal Component Analysis (PCA) and hierarchical

clustering approaches were performed to provide a global view of the transcriptomic data.

These approaches enabled us to identify similarities between samples and structure in the data-

set. This allowed a first assessment of the underlying principal sources of variation. After filtra-

tion and normalization, principal components were computed on all detectable transcripts

with prcomp in R thus representing multiplicative differences between samples. The first few

PCs [30–32] were investigated because they represented large axes of variation, using graphical

display (Fig 1). In complementary, unsupervised hierarchical clustering was used to investigate

the grouping of all samples. For this analysis on the entire normalized transcriptome, Pearson

correlation was chosen to evaluate the distance between samples with R base functions, cor,
and dist. Hierarchical clustering was used to build our data dendrogram with hclust R function

(Fig 2A). Finally, ANOVA was used to determine the percent of gene expression variance

explained by cell types. The expression for each gene was centered and scaled to a mean and

variance of respectively 0 and 1. Analysis of variance was performed on each gene to obtain

the sum of squares (SS) explained by cell types. Multivariate variance explained was estimated

by adding explained SS from all genes and then dividing by the total SS.

Definition of co-expression modules

Starting with the hypothesis that genes with a similar function will often be co-expressed, we

built co-expression modules with the R package WGCNA (v1.64–1) using the RNA-Seq data

Fig 1. Transcriptomic data distinguish immune cell types. Representation of the first two principal components on RNA-seq data from all individuals for all samples

(Panel A) and for lymphoid samples alone (Panel B). The R function prcomp was used to perform principal component analysis, and each symbol represents an individual

RNA-seq sample.

https://doi.org/10.1371/journal.pone.0233543.g001
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from our nine primary immune cell types. The objective of this tool is to cluster genes based

on similar expression profiles between samples [33, 34]. For building co-expression networks

with WGCNA, we choose a signed topology to compute gene co-expression similarity. Signed

topology makes it easier for interpretation purposes or relevant biology, such as making dis-

tinction gene repression and activation [19]. A connectivity matrix between genes was then

computed that describes how strongly genes are connected to all others. For that purpose, a

“soft thresholding” parameter β must be chosen [34]. This parameter is an exponent to the cor-

relation matrix that determines the emphasis put on higher vs lower correlations. The pickSoft-
Threshold function was used to help in choosing β. After analysis of network topology for

various β values, a value of 12 was selected as a good trade-off between scale-free topology and

connectivity (S3 Fig). Therefore, to compute dissimilarities between genes, we used the

WGCNA functions adjacency and TomsimilarityFromExpr (Topology Overlap Matrix Similar-

ity From Expression) with the following parameters: Pearson correlation, signed topology and

a β of 12. Based on the TOM dissimilarity measure, hclust function was used to build a hierar-

chical clustering of the genes. Finally, cutreeDynamic function with minClusterSize and deepS-

plit parameters to 20 and 2, respectively [35], was used to cut the hierarchical tree into gene

modules (S4 Fig). To merge closely related modules among our 63 modules, MergeCloseMo-
dules function was applied with cutHeight parameter of 0.05. Each module was represented by

its first principal component using the function moduleEigengenes. Correlation and

Fig 2. Unsupervised hierarchical clustering of RNA-seq data reflects hematopoietic differentiation. A dendrogram representation of the

unsupervised hierarchical clustering of RNA-seq data from across all individuals and cell types (Panel A) has a structure that closely resembles the

known differentiation scheme of immune cells (Panel B). Each dendrogram leaf represents a single RNA-seq sample and Y-axis represents the

distance based on Pearson correlation. Black arrows represent a decision in the known differentiation scheme of immune cells.

https://doi.org/10.1371/journal.pone.0233543.g002
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corresponding p-values of association between a given module and a cell type were then evalu-

ated from these principal components using cor and corPvalueStudent functions from the

WGCNA package.

Global and targeted functional annotation

We used a combination of global and targeted analyses of gene annotations to identify poten-

tial biological functions represented in each module. For a global analysis of genes within each

module, we used DAVID (Database for Annotation, Visualization, and Integrated Discovery)

[36] to test for enrichment of functional annotations, specifically using the annotation from

Gene Ontology (GO) terms for Biological Processes, Molecular Functions, and Cellular Com-

ponents, Up-Keywords, Interpro and KEGG, [37–40]. In S4 Table, we report all annotations

for which the enrichment was� two-fold and a P<0.05.

For the targeted analyses, we undertook a more detailed approach taking advantage of the

information within GeneCards [41], PubMed [42] and Google Scholar [43] databases, using

gene symbols as query parameters. This approach was applied to two gene lists per module;

the first list consisted of the set of genes most highly expressed in each module, with the

hypothesis that the highly expressed genes may provide insight to important functions within

each module. Specifically, we examined the known functions of the top 2% expressing genes

(corresponding to the 98th percentile) which we called these the Top Expressing Genes (TEGs).

The second list consisted of the genes that had the most important impact on the first principal

component, regardless of their level of expression. Specifically, we ranked genes based on their

contribution to the first principal component of the module in question with the objective of

examining the known functions for the genes that accounted for 20% of PC1, or the top 20

genes if this exceeded 20 genes, we called these the Module Representative Genes (MRGs). For

modules 22, 26, 38, 41, we also performed this detailed functional annotation to the entire set

of genes within the modules in order to compare with the results obtained from these targeted

analyses.

Analyses of transcription factors and transcription factor binding sites in B

cells

Genes within modules were annotated as TFs based on the catalog of human TFs published by

Lambert and colleagues [44]. In this resource, based on a collection of databases including

TRANSFAC, HT-SELEX, UniProbe, and CisBP to identify human TFs and their binding site

motifs [45–54], a TF was defined as a protein capable of a) binding DNA in a sequence-specific

manner and b) regulating transcription. In total, they identified 1,639 human TFs, and binding

motifs for two-thirds of these (see http://humantfs.ccbr.utoronto.ca/index.php) Transcrip-

tional control of genes within each module was analyzed in the following fashion: (1) the tran-

scription start site (TSS) was located for each gene using the GRCh38 Ensembl database using

the biomaRt tool [55]; (2) promoter regions were then defined as -1000 to +500 base pairs

around these TSS; while somewhat arbitrary, this is a commonly used definition of the proxi-

mal promoter [56, 57]; and (3) these promoter regions were examined for the presence of

TFBS as defined by ChIP-Seq data from the ENCODE (Encyclopedia of DNA Elements) Proj-

ect [58]. As this latter data was referenced to the human genome build GRCh37, TFBSs were

converted to GRCh38 version using liftOver [59]. This ENCODE dataset consisted of ChIP--

Seq data for a total of 161 TFs in 80 immortalized cell lines. Of the nine immune cell popula-

tions within the current study, only the B lymphocyte population was represented in this

dataset. For the modules associated with B lymphocytes, we restricted our analyses to the 76

TFs that were studied in the GM12878 immortalized B cell line. Enrichment of TFBS in the
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promoter regions within each of these modules was calculated with the hypergeometric distri-

bution. Enrichment p-value threshold was 0.05.

Transcription factors potentially associated with cell lineages and states

We examined all 1600 human TFs [44] for expression patterns across the cell types that were

consistent with having a role in cell fate decisions, independent of co-expression modules

described above. Following the differentiation scheme depicted in S5 Fig, we considered each

branch point like a cell fate decision and looked for TFs that appeared to be specific for a given

fate (e.g. myeloid vs. lymphoid; neutrophil vs. monocyte; B cell vs. T cell; etc.). Several TFs

were very well known to be implicated in cell fate decisions (e.g. PAX5 for B cell differentia-

tion; EOMES for differentiation of cytotoxic cells; FOXP3 for the differentiation of CD4+ T

cells). Based on the expression pattern of these well-known TFs involved in differentiation of

immune cells, we defined the following algorithm for prioritizing TFs potentially having a role

in cell fate decisions (S5 Fig and S5 Table): (1) cell types resulting from a cell fate decision

(e.g. lymphoid) should have an average number of read counts for the given TF at least 15-fold

greater than the average number of read counts for cells from the same branch point that do

not have the same fate (e.g. myeloid); (2) each cell type resulting from a cell fate decision

should have an average number of read counts >100 for the given TF in order to reduce arti-

facts resulting from the greater variance at low read counts; (3) the cell type resulting from a

cell fate decision with the lowest read count for the given TF should be at least four-fold greater

than the cell type with the highest read count from the same branch point that does not have

the same fate (e.g. IKZF3 in CD4+ T cells vs LPS-activated macrophage). Finally, we identify

which of these candidate TFs are known to be implicated in associated cell fate decisions based

on a search of the PubMed, GeneCards, Entrez, UniProt, SwissProt.

Results

Data generation: Isolation of immune cells and RNA-Seq analysis

For the current study, we isolated neutrophils, B cells, CD4+ and CD8+ T cells, NK cells, γδ T

cells and monocytes from the peripheral blood of 12 healthy volunteers. In addition, we differ-

entiated in vitro the monocytes into mature macrophages, as well as stimulated these macro-

phages with LPS, thus generating a total of nine different cell populations. We obtained highly

pure immune cell populations, and immunophenotyping analyses confirmed the representa-

tion of subpopulations that can be expected in the circulation of healthy adults (S1 Fig). A

transcriptomic analysis of the total RNA extracted from these cells was performed using a

paired-end sequencing approach, that resulted in a very good depth of coverage (2.48x107 read

counts per sample on average; S3 Table), and thus can be expected to provide quantitative

measures of transcript abundances even for less common transcripts [60]

Structure of transcriptomic data is a reflection of the known differentiation

scheme for immune cell subsets

Prior to embarking upon in-depth analyses of this RNA-Seq data, we wanted to assess whether

the patterns of gene expression could potentially be correlated to differences in functions

between cell populations. Principal component analysis (PCA) revealed a clear separation of

the cell types on the first two components, representing the nine populations into four very

distinct clusters (neutrophils, lymphocytes, monocytes, and macrophages), with all individuals

clustering tightly within each cell population (Fig 1A). This is concordant with the observation

that 86% of the total multivariate variance is between the cell types and the first two
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components capture a large proportion of the total variance (43% and 25% respectively). We

also applied a similar PCA only on lymphoid cell types, which resulted in five distinct clusters

representing the five different lymphoid populations: B cells, CD4+ and CD8+ T cells, NK

cells and γδ T cells (Fig 1B). Hence gene expression in our data set clearly represents more dif-

ferences between immune cell populations than between individuals.

Using an unsupervised hierarchical clustering we found that the dendrogram reflected the

differentiation scheme of pluripotent stem cells into myeloid and lymphoid cell types, except

for B and NK cells, which were interchanged in our hierarchical clustering (Fig 2). Given these

observations, we propose that there is a great potential to identify differences in gene expression

between immune cell populations that will reflect the functional biology of these populations.

Defining potential functional groups using a combination of gene co-

expression and functional annotation

Knowing that there is a significant correlation structure in the transcriptome captured by the

RNA expression data sets, and those co-expressed genes are often related functionally [61], we

hypothesized that defining modules of co-expressed genes would be a relevant starting point

for exploring potential functional units relevant to these immune cells. We, therefore, used a

weighted gene co-expression network analysis (WGCNA) approach to define modules of co-

expressed genes [33]. Using this approach, we obtained 45 modules with an average of 318

genes per module (ranging from 26 to 1,945 genes; Table 1). As can be seen in Fig 3, each

module could be associated with one or more immune cell populations. For example, modules
22 and 38 were highly associated with B cells (r = 1.00, P = 1.97 x10-106; r = 0.74, P = 8.05x10-

19; respectively) and module 41 with B cells and monocytes (r = 0.63, P = 1.41x10-12; r = 0.46,

P = 8.32 x10-07; respectively), whereas module 26 was strongly associated with NK, γδ T and

CD8+ T cells (r = 0.68, P = 1.71 x10-15; r = 0.41, P = 1.78 x10-05; r = 0.32, P = 9.80x10-4; respec-

tively), all cell populations that perform cytotoxic functions.

To gain a better understanding of the biology underlying these co-expression modules that

were highly associated with one or more specific cell types, we used a combination of global

and targeted analyses of gene annotations and identified potential biological functions repre-

sented in each module. For the global analysis, we tested for the enrichment of annotation

terms within the Gene Ontology (GO), UniProt, InterPro and KEGG databases [37, 40]. For

the targeted analysis, we undertook two independent approaches. The first was to identify the

set of genes most highly expressed in each module, with the hypothesis that the highly

expressed genes may provide insight into important functions within each module. Specifi-

cally, we examined the known functions of the genes that are within the top 2% of genes

expressed within the cell types associated with a given module. We call these the Top Express-
ing Genes (TEGs). The second targeted approach entailed the identification of the genes with

the greatest impact on the first principal component for each module, with the hypothesis that

these genes better represent the modules, regardless of the expression level. Specifically, we

examined the known functions of the genes that can account for 20% of the variance captured

by the first principal component; We call these the Module Representative Genes (MRGs). To

assess whether these approaches could identify functions that are relevant to the broader set of

genes within each module, we also examined the known function for the entire set of genes

within modules 22, 38 and 41.

B cell-specific modules; cell activation and BCR engagements

As mentioned, modules 22 and 38, are highly associated with B cells (Fig 3) and contain 195

and 45 genes, respectively (Table 1). In our global analysis of module 22, there were eight
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Table 1. Summary of key functions identified for modules of co-expressed genes.

Module

ID

# Genes in

module

Associated cell types ��� Main functions identified

B NK γδ T CD4+ CD8+ Neut Mon M⏀ LPS

1 1212 0.3 0.23 Mitochondrial functions, ribosome biogenesis

2 1945 Broad range of basic functions

3 619 0.26 0.2 0.27 0.29 Transcriptional regulation via zinc finger proteins

4 593 0.48 0.32 0.35 0.39 Lysosomal function; neutrophil polarity; chemoattraction

5 489 0.62 0.69 Chemokine production, microtubule network; extracellular exosomes

6 748 0.49 0.43 Mitochondrial metabolism

7 452 0.68 0.44 Azurophil granules; cytoskeleton dynamics; ruffle

8 411 0.37 0.18 0.25 0.38 0.37 Transcriptional regulation (e.g. of cytokine genes) via zinc finger proteins

9 427 0.44 0.55 0.48 Endocytosis & ROS production

10 309 0.71 0.44 Actin remodeling & membrane trafficking, nicotinamide metabolism

11 296 0.96 Production of Azurophil granules

12 548 0.85 0.39 Cytoskeleton remodeling; cell polarity; chemokine signaling

13 401 0.33 0.22 0.23 0.32 0.32 Cell-cell adhesion; actin remodeling; interferon response

14 246 0.24 0.64 Ubiquitin-like conjugation; control of intracellular membrane traffic;

transcriptional regulation

15 595 0.9 Defensin-specific granules

16 426 0.91 NET-associated histone production

17 414 0.34 0.21 0.24 0.32 0.32 Transcriptional regulations; control of immune cell proliferation

18 226 0.2 0.23 0.22 0.21 0.23 0.27 N.D.

(19) 321 0.36 0.35 Cytoskeleton remodeling

20 429 0.39 0.5 0.47 Lysosomal/Endosomal functions

21 388 0.61 Neutrophil polarization, trafficking, and exocytosis; ROS & NET

production

22 195 1 Maintenance of B cell lineage; BCR signaling

23 637 0.35 0.22 0.34 0.34 Ribosomal functions

24 177 0.45 0.36 0.31 0.37 Control of Wnt signaling via beta-catenin TCF complex

25 147 0.42 0.33 0.28 0.32 Superoxide-generating NADPH oxidase activator activity

26 129 0.68 0.41 0.32 Cytotoxic granule composition; non-self-recognition

27 120 0.49 0.37 0.31 0.4 Modulation of receptor signal transduction

28 279 0.6 0.65 Bioenergetics (e.g. fatty acid oxidation, protein turnover)

29 93 0.98 Anti-microbial functions (chemokine production & zinc metabolism)

30 91 0.33 0.52 0.51 Regulation of T cell signaling

(31) 81 0.66 0.57 Modulation of immune response including via CD28, netrin 4 and

semaphorin 5A

(32) 229 0.24 0.5 0.65 Vesicular trafficking (lysosomes, endosomes, exosomes)

33 67 0.34 0.18 0.23 0.26 0.28 N.D. (associated with lymphocytes)

(34) 61 0.32 0.27 0.47 0.45 Antigen presentation; vesicle function and trafficking; RAS signaling

(35) 58 0.54 0.68 Response to hypoxia; autophagy; regulation of inflammation

36 52 0.76 0.47 Endocytosis and membrane trafficking

37 46 0.39 0.28 0.36 0.36 Intracellular vesicle formation and function, including lysosomes

38 45 0.74 0.3 0.35 Regulation of BCR signaling

(39) 43 0.91 0.22 Golgi apparatus

40 121 0.88 Transcriptional regulation via zinc finger proteins

41 39 0.63 0.46 0.22 MHC class II antigen processing and presentation

42 38 0.26 0.19 0.22 0.22 0.28 0.32 Heterogeneous functions; IL7R signaling

43 35 0.92 N.D.

(44) 34 0.36 0.87 Interferon response

(Continued)
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annotation terms that were below 5% False Discovery Rate (FDR), and included “B-cell activa-

tion”, “Primary Immunodeficiency”, and “Immunoglobulin domain”, with a total of 17 shared

genes being associated with one or more of the annotation terms mentioned previously (S4

Table). For module 38, 16 annotation terms with P� 0.05 were detected, but one was below

5% FDR, and none appeared to indicate functions specific to B cells (S4 Table).

Regarding TEGs in B cells, there were 12 TEGs within module 22 and three TEGs within

module 38 (S6 Table). Querying of public databases (GeneCards, PubMed and Google

Scholar) for the known functions of the TEGs within module 22 revealed that many are

involved in B cell receptor (BCR) structure and/or signaling (e.g. IGLL5, CD79A, BANK1,

MS4A1, FCRL1) [62]. There were also two genes encoding transcription factors (TF),

POU2AF1 and PAX5, associated with B cell biology [63, 64]. Interestingly, PAX5 also regulates

the expression of EBF1, a gene within module 38, a TF crucial for B cell differentiation [65]. In

the case of module 38, two of the three TEGs have known functions in B cells: CD22 inhibits

BCR activation and FCRLA is involved in immunoglobulin assembly [66, 67] (Fig 4).

Regarding the MRGs, there were 28 within module 22 and seven within module 38 (S6

Table), with some overlap between the MRG and TEG lists: the IGJ gene (alias JCHAIN)

encoding the immunoglobulin J chain in module 22, as well as the CD22 and FCRLA genes in

module 38 (S6 Table). Among the MRGs from module 22 are the TNFRSF13B (alias B cell-
activating factor, BAFF) and TNFRSF17 (alias B Cell Maturation Antigen, BCMA) genes, which

play an important role in B cell activation. The remainder of these MRGs is poorly-character-

ized genes or non-protein coding RNAs (9 of 28). Of the poorly characterized genes, some are

expressed in B cells (e.g. HTR3A [68]) or involved in B cell development/maturation (e.g.

KLHL14 and VPREB3 [69, 70]). Others, such as CHL1 and TCL1A have no known links to B

cell function and merit further functional studies. Specifically, CHL1 may be involved in cell

Table 1. (Continued)

Module

ID

# Genes in

module

Associated cell types ��� Main functions identified

B NK γδ T CD4+ CD8+ Neut Mon M⏀ LPS

(45) 26 0.56 0.44 0.27 Regulation of intracellular membrane trafficking

Module ID: Module number; Module ID in parentheses: the associated functions are more speculative as enrichment is more limited; ���: only correlations between

modules and cell types where P<0.05 are indicated; B: B cells; NK: NK cells; γδ T: γδ T cells, CD4+: CD4+ T cells; CD8+: CD8+ T cells; Neut: neutrophils; Mon:

monocytes; M⏀: macrophages; LPS: LPS-activated macrophages. N.D.: Non-determine.

https://doi.org/10.1371/journal.pone.0233543.t001

Fig 3. Heatmap of the correlation values of WGCNA modules with primary immune cell types. Columns represent modules computed with WGCNA and rows,

primary immune cell types. Correlation values and P values are displayed in S6 Fig.

https://doi.org/10.1371/journal.pone.0233543.g003
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adhesion and migration, as these functions are ascribed to its homolog L1CAM [71] and

TCL1A is involved in AKT activation, which is important for BCR signaling [72].

There were five MRGs from module 38 that were also not TEGs: BLNK, DENND5B,

DIRAS1, RASGRF1, and LOC102724714. BLNK encodes a critical adaptor protein that bridges

BCR-associated kinase activity with downstream signaling events [73, 74]. DENND5B is a

poorly characterized gene containing a MAP kinase activating death (MADD/DENN) domain.

While the function of DIRAS1 and RASGRF1 are not well understood, it is likely that these

RAS family proteins are involved in B cell signaling.

A module shared by B cells and monocytes; a gene expression program

enabling antigen processing and presentation

While modules 22 and 38 are specifics to B cells, module 41 was strongly associated with both

B cells and monocytes, two antigen-presenting cells (Table 1). Global analysis of the 39 genes

within this module revealed multiple annotation terms (N = 66) that were significantly

enriched, with the three most significant (%FDR<10−8) being “endosome”, “MHC classes I/II-

like antigen recognition protein”, and “MHC class II protein complex” (S4 Table). In fact,

many of the annotation terms found to be enriched in this module can be explained by a core

Fig 4. Biological functions ascertained from the analysis of genes within two B cell-associated modules. The genes within modules
22 and 38 encode multiple genes that are central to B cell functions. These include components of B cell receptor (BCR) complex, such

as inhibitory and stimulatory co-receptors CD22 and CD19, as well as TFs regulating the transcription of many of these. Genes in

modules 22 and 38 are represented in green and blue, respectively: TEGs in dark colors, MRGs in intermediate colors and other genes in

light colors. To see the profile of gene expression mean of all genes of module 22 presented in this Figure refers to the heatmap in S7 Fig.

https://doi.org/10.1371/journal.pone.0233543.g004
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set of genes including CIITA, CD74, HLA-DMA, HLA-DRA, HLA-DRB1, HLA-DMB, CD1A,

CD1C, LY86, and CD180. The five TEGs in module 41 are part of this core set of genes (CIITA,

CD74, HLA-DMA, HLA-DRA, and HLA-DRB1), all involved in and essential to antigen pre-

sentation in B cells and monocytes [75, 76] (S8 Fig).

Regarding the genes that are most representative of module 41, there were six MRGs

(CD74, SIDT2, FGD2, CD1A, MMP17, and HLA-DRA), three of which are included in the core

set of genes described above (CD74, CD1A, and HLA-DRA). Additionally, SIDT2 and FGD2

contribute to intracellular trafficking relevant to antigen processing [77, 78]. MMP17 is an

endopeptidase that may be involved in the activation of membrane-bound precursors of

growth factors or inflammatory mediators, such as TNF-α [79], which enhances antigen pre-

sentation. The combination of the global and targeted analyses clearly supports module 41
having a role in antigen presentation in both B cells and monocytes.

A shared module associated with NK, γδ T, and CD8+ T cells; a role in

cytotoxic granule and non-self-recognition

Fig 3 shows that module 26 is associated with NK, γδ T and CD8+ T cells, strongly suggesting

that it contains genes encoding for functions shared by these cell types (Table 1). The global

analyses of the 129 genes within this module identified multiple significantly enriched annota-

tion terms, including “natural killer cell-mediated cytotoxicity”, “cellular defense response”

and “regulation of immune response”, all with FDR<10−7 (S4 Table). Genes enriched for

these functions are located in the KIR locus (KIR2DL1, KIR2DL3, KIR3DL1, KIR3DL2, and

KIR2DS4) within the human leukocyte receptor gene complex (LRC), in the NK gene complex

(NKC) (KLRC1, KLRC2, KLRC3, KLRC4, KLRD1, KLRF1, and KLRK1), encoding proteins

found in cytolytic granules (PRF1, GZMB, and GNLY) and cell surface proteins (CD160,

NCR1, and FASLG) that mediate and/or potentiate cell-cell interaction. The primary functions

that NK, γδ T, and CD8+ T cells have in common are the recognition and killing of abnormal

cells (e.g. infected with viruses or other intracellular pathogens, cancerous), and the genes

noted above are essential to these functions (Fig 5). It should be noted that all of the genes

have equivalent expression levels across these three cell types, except for the KIR genes which

had a differential expression pattern (NK > γδ T> CD8+ T).

When examining the 18 TEGs in these cell types, many of the same genes are highlighted

(GNLY, GZMB, KLRD1, KLRF1, KLRK1, and PRF1), although other TEGs, such as GZMA and

GZMH, can also be attributed to cytolytic granules. NKG7 (alias GMP-17), another TEG, may

also be contained within these granules in all three cell types, since it is found in the membrane

of NK cell granules [80]. Many of the other TEGs within this module are involved in regulating

the cell activation state, such as GPR56, an inhibitory receptor on NK cells [81], NCR1, that

displays either a stimulatory or inhibitory effect depending on the ligand [82], and SH2D1B

that regulates signal transduction from cell-surface SLAM receptors and leads to granule

polarization to cell-cell synapses [83]. In addition, CD160 is potentially an activating receptor

encoded outside the LRC and NKC complexes [84, 85].

Also included in this list of TEGs are a number of genes whose functions are poorly charac-

terized in NK cells, γδ and CD8+ T cells, including CST7, CTSW, and FGFBP2. CST7 encodes

cystatin F, which may be important for the processing and activation of granule-associated ser-

ine proteases, in particular granzymes A and B [86]. CTSW encodes Cathepsin W, which is a

putative cysteine protease that is believed to be released during target cell killing, although

apparently not essential to the process of cytotoxicity [87]. FGFBP2 is highly expressed in NK

cells, γδ T and CD8+ T cells and essentially absent in the other immune cell types studied

herein, suggesting that it plays a specific function in these cells.
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Regarding the genes that are representative of module 26, there were 21 MRGs, with three

(GZMB, KLRD1, and S1PR5) also being in the list of TEGs (S6 Table). Five of the MRGs are

encoded within the LRC or NKC complexes (KLRD1, KIR3DL1, KIR2DL3, KLRC3, and

KLRC1). This MRG list also contained FASLG, important in T lymphocyte induced cell death,

as well as B3GAT1 which encodes a key enzyme in the biosynthesis of the carbohydrate epitope

HNK-1 (human natural killer-1, alias CD57). Moreover, this list contains the genes that

encode the XCL1 and XCL2 cytokines–two ligands for the chemokine receptor XCR1.

Although still poorly characterized, this chemokine likely mediates the chemotactic activity of

cDC towards cytotoxic cells [88].

In terms of transcriptional control of genes within this module, it is interesting to note that

DUSP2, a TEG of this module, encodes a dual-specificity phosphatase that negatively regulates

the activity of the signal transducer and transcriptional activator STAT3, which in turn regu-

lates the transcription of the KLRK1 gene within the NK gene complex [89, 90]. The TF

RUNX3 is also a TEG and regulates genes implicated in lymphocyte activation, proliferation,

cytotoxicity, migration and cytokine production in CD8+ T and NK cells, like NCR1 and

Fig 5. Targeted analyses of genes within module 26, associated with NK, γδ T, and CD8+ T cells. The majority of genes in module 26
encode components of cytotoxic granules and proteins involved in the recognition of non-self. Genes in module 26 are represented in

purple: TEGs in dark purple and MRG in light purple. To see the profile of gene expression mean of all genes of module 26 presented in

this Figure refers to the heatmap in S7 Fig.

https://doi.org/10.1371/journal.pone.0233543.g005
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IL2RB [91, 92]. Although not within the list of TEGs, ZNF683 (alias Hobit) drives the expres-

sion of GPR56 in NK cells [81].

Taken together, these analyses suggest that module 26 has two predominant functions, the

first being cytotoxic granule composition, and the other being non-self-recognition, very con-

sistent with the role of NK, γδ T, and CD8+ T cells.

Modules associated with LPS-activated macrophages

In addition to identifying co-regulated genes associated with specific cell types, we also

explored our ability to use this experimental approach to examine the transcriptional impact

of modifying the activation state of a cell. Specifically, we cultured CD14+ enriched mononu-

clear cells from human peripheral blood with M-CSF for a total of 8 days to obtain macro-

phages [93, 94] and activated macrophages were generated by stimulating the macrophages

with LPS during the last 24h of culture [95]. As can be seen in Fig 3, module 29 stands out as

being highly associated with response to LPS cells (Table 1). A global analysis of the 93 genes

within this module identified 29 significantly enriched annotation terms (FDR<5%) that fell

within two groups. The first group, including “cellular response to interferon-gamma”, “cellu-

lar response to interleukin-1”and “cellular response to tumor necrosis factor”, is driven by a

common set of genes (CCL1, ASS1, CCL20, EDN1, CCL8, CCL19, IRG1 (alias ACOD1), CCL15
and CCL17), many of which are chemokines (CCL or CXCL genes) acting as chemoattractants

for immune cells. EDN1 is expressed by endothelial cells, although it can also be produced by

macrophages co-cultured with activated T cells [96]. The second group includes annotations

related to “metallothionein” and is also driven by a common set of genes (MT1G, MT1H,

MT1L, MT1M, and MT2A) known as metallothioneins; they shape the macrophage zinc pool

in response to inflammatory and infectious stimuli [97].

Module 29, strongly associated with LPS-activated macrophages, contains five TEGs; CCL8
and MT2A, both highlighted by the global analysis, complement factor B, known to be LPS-

induced [98], IDO1, which catalyzes the first and rate-limiting step of the catabolism of the

essential amino acid tryptophan along the kynurenine pathway [99], and, finally, ST3GAL1,

which is highly expressed in all cell types examined, and thus is likely, not informative to this

module. In addition to the TEGs, 14 MRGs were found in module 29 including three metal-

lothioneins (MT1G, MT1H, and MT1M) and one chemokine (CCL15) also highlighted by the

global analysis. Among the other MRGs, we found two cytokines, CSF3 and IL36G, as well as

PDGFRL, whose molecular function is not established but may be involved in cell proliferation

[100]. Taken together, these analyses support an antimicrobial function for this module, with

an important signature of chemokine production and zinc metabolism.

The neutrophil transcriptome is distinctive from other immune cell types

Examining the distribution of reads, before and after normalization, we observed that neutro-

phils have a very different pattern when compared to the other cell types (S2 Fig). Neutrophils

have fewer expressed genes (11,626 genes for neutrophil and between 13,161 and 13,614 for

other cell populations) and the spread in expression is larger than the other cell types. Not sur-

prisingly, this was also observed in the PCA and hierarchical clustering analyses, representing

global differences in the transcriptome of neutrophils as compared to all other cell types exam-

ined herein (Fig 1A). In addition, there were 15 transcripts with a greater than the 100-fold dif-

ference between the average number of read counts in neutrophils as compared to the average

number of read counts across all other cell types combined (see S2 Text).

Global analysis of the 13 neutrophil modules identified general functions such as “tran-

scription” and “phosphoprotein”; however, a number of more specific functions relevant to
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neutrophils/myeloid cells were also identified, such as “lysosome”, “extracellular exosome”,

“movement of cell or subcellular component”, and “superoxide-generating NADPH oxidase

activator activity” (S4 Table). In terms of targeted analyses for these 13 neutrophil-associated

modules, there were multiple TEGs (n = 349) and MRGs (n = 628). These analyses highlighted

neutrophil polarity, lipid metabolism, and chemoattraction as functions related to module 4;

calprotectin, azurophil granules, cytoskeleton dynamics, chemoattraction for module 7; actin

remodeling & membrane trafficking, nicotinamide metabolism for module 10; neutrophil

polarization, trafficking and exocytosis for module 21; and endocytosis and membrane traf-

ficking for module 36.

Moreover, given that the molecular aspects of many neutrophil functions have previously

been characterized, we looked for the presence of the transcripts relevant to these functions

within our modules. Specifically, we looked for 126 transcripts relevant to neutrophil granules

(e.g. azurophil, gelatinase, secretory), antimicrobial proteins, reactive oxygen species (ROS), Neu-

trophil Extracellular Traps (NETs), cell cross-talk and resolution of inflammation (apoptosis and

clearance, lipid mediator class switch) [101–104]. One hundred 11 transcripts were expressed in

our dataset, with 80 of them found within our neutrophil-associated modules. Using this

approach, we found that module 11 was associated with the presence of transcripts for azurophil

granules, module 15 with defensin-specific granules, module 21 with ROS and NET proteins, and

modules 16 with NET-associated Histone Cluster 1 family members. Extending this approach to

the neutrophil modules also associated with other myeloid cells, we observe multiple transcripts

relevant to neutrophil functions, either because the functions are shared between these cell types

(e.g. ROS production, vesicle trafficking) or because the gene products are involved in different

functions (e.g. actins are involved in NETs and other cytoskeleton-related functions).

Transcriptional control of genes within B cell modules

In order to gain an understanding of the transcriptional control of genes within each module,

we were interested in examining whether there was an enrichment of TF binding sites (TFBS)

within the promoters of the genes within its module. In order to do so, we used the empirical

ChIP-Seq data from the ENCODE (Encyclopedia of DNA Elements) Project [58]. Given that B

lymphocytes are well represented in the ENCODE dataset—76 TFs were studied in the

GM12878 immortalized B cell line–we focused our initial analyses on the three modules most

associated with B lymphocytes and described above (modules 22, 38 and 41). Specifically,

these analyses identified that the TFBS for EZH2 was significantly enriched in the proximal

promoters of the 195 genes within module 22 and the TFBS for IKZF1 was enriched in the pro-

moters of the 45 genes within module 38 (S7 Table). Analysis of the promoters for genes

within module 41 associated with B cells and monocytes revealed enrichment for nine differ-

ent TFBSs (BCL11A, CEBPB, EP300, EZH2, IKZF1, MTA3, NFATC1, RFX5, and SPI1) (S7

Table). Interestingly, the enrichment was the greatest for IKZF1, with over four- and five-fold

enrichment in modules 38, and 41, respectively. The transcript for IKZF1 is found in module
17, which while associated with lymphoid cells (S6 Fig), has also strong expression across all

immune cells (S7 Table). BCL11A is essential for lymphopoiesis and B cell development; it is

also a critical component of a transcriptional network that regulates B cell fate by controlling

V(D)J recombination and functions upstream of EBF1 and PAX5 in the B cell lineage differen-

tiation pathway [105–107]. RFX5, EZH2, EP300, and SPI1 all control MHC class II expression

either directly or via interaction or regulation of CIITA [108–115]. MTA3 has been implicated

in cell fate during B lymphocyte differentiation [116]. NFATC1 regulates normal homeostasis

and differentiation in B cells [117]. Finally, CEBPB is involved in the survival of Ly6C- mono-

cytes and have unknown function in MHC class II [118].
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Interestingly, all of the TFs enriched in this analysis have average-to-high levels of expres-

sion in B cells. Among the 76 TFs that were evaluated, only two (MYC and NFATC1) have

their TFBS enriched in their own modules (modules 3 and 23; respectively). Specifically, the

empirical data provided evidence of a TFBS for MYC in the promoter region of 180 genes of

the 619 genes from module 3. It has been shown that MYC is necessary to stimulate both pro-

liferation and inhibited differentiation in mature B cells induced by BCR signal [119, 120].

BCR signaling is also known to increase the transcription of the NFACT1 gene, which in turn

plays an important role in controlling plasmablast/plasma cell formation [121, 122].

Transcription factors potentially associated with cell lineages and states

As described above for the analysis of the B cell-specific modules, the expression of TFs playing

a key role in cell fate can be maintained in mature cells. In fact, with the exception of BACH2,

TCF3 and IKZF1, all of the key TFs known to be involved in the multiple steps of B-cell-lineage

differentiation from common lymphoid progenitor to mature B cell are within modules 22

and 38, despite their being identified from the transcriptome of mature B cells (S8 Table)

[123–126]. BACH2, TCF3, and IKZF1 were not identified in these analyses as, while they are

necessary to B cell differentiation, their expression is not unique to B cells and in fact, they are

ubiquitous in the primary immune cell types studied herein. We were therefore interested in

identifying additional TFs that were highly expressed in a given cell type or cell lineage. In

order to do so, we examined the 1600 known human TFs [44] for expression patterns that

were consistent with the differentiation scheme depicted in Fig 2B. Specifically, we considered

each branch point as representing a cell fate decision and looked for TFs that appeared to be

specific for a given fate (e.g. myeloid vs. lymphoid; neutrophil vs. monocyte; B cell vs. T cell).

For example, we looked for TFs that were highly expressed in lymphoid cells and absent or

only very weakly in myeloid cells and identified 13 TFs that are candidates for being involved

in lymphoid differentiation and/or function (S5 Fig and S5 Table). This list includes IKZF3,

which is a known regulator of lymphoid development and BACH2, a known inhibitor of mye-

loid differentiation [127, 128]. In addition, when looking for TFs potentially involved in the

differentiation step leading to monocytes, we identified SMAD1, which is known to be impli-

cated in monocyte differentiation, polarization and inflammation [129, 130] and MITF which

has not previously been associated with monocyte differentiation but is known to be a phago-

cyte-restricted TF in macrophage [131]. Altogether, we identified 74 TFs differentially

expressed in one cell type or lineage (S5 Fig and S5 Table), with over a third (22/74) having

confirmatory evidence in the literature as being involved in the relevant differentiation step.

While not definitive proof, this certainly indicates that these TFs are strong candidates for

playing a role in cell fate decisions and/or maintenance.

Discussion

Cells within the immune system are generated through successive differentiation steps from a

common pluripotent hematopoietic stem cell progenitor. As in all differentiation processes,

certain functions are gained and others are lost along the way, such that each immune cell sub-

set has different functions, some unique to a given cell type while others are shared. For

decades, such differences have been exploited in flow cytometry-based experimentation, with

specific cell surface markers (e.g. CD3, CD4, CD8, and CD14) used to identify, qualify and

quantify immune cell populations within different experimental contexts. Sequencing the tran-

scriptome (RNA-seq) of these immune cells can provide a complementary approach to under-

standing the differences between immune cell types or between different experimental

conditions, disease states. RNA-seq based approaches certainly come with the challenge of
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analyzing and interpreting the data on thousands of transcripts per sample. We, therefore, set

out to generate, analyze and interpret RNA-seq data of primary human immune cells from

healthy individuals in order to evaluate the feasibility and usefulness to understand some of

the biology underlying these cells and could play a major role in many immune-mediated

diseases.

Starting with the premise that genes with correlated expression patterns are more likely to

have shared biological functions than if they have disparate expression patterns, we aimed to

identify functional modules within and across primary human immune cells by defining sets

of co-expressed genes. Indeed, this unsupervised approach identified co-expression modules

that were either highly correlated to a single cell type or to a group of cell types (Fig 3). We

then assigned potential functions to these modules using a combination of global and targeted

annotation approaches. From these analyses, it was clear that modules associated with a single

cell type were linked to known functions of those cell types; for example BCR signaling path-

way genes in the B cell-specific module or genes encoding proteins linked to functions of spe-

cific granules, ROS and NET production in different neutrophil-associated modules. As

importantly, modules shared across different cell types also had biologic meaning; for example,

MHC Class II antigen processing and presentation in B cells and monocytes, or cytotoxic

granule composition and non-self-cell identification in NK, γδ T, and CD8+ T cells. These

results confirm that this approach can reveal co-expressed genes that do share functions.

While not the primary objective of the current study, these co-expression modules also pro-

vide an opportunity to use a “guilt by association” approach in order to identify additional

genes involved in the specific functions revealed by our analyses. For example, a number of

genes in module 41 encode proteins implicated in vesicular traffic (BLOC1S6, LAMP5,

TBC1D5, and TRAK1), potentially revealing novel players in the trafficking of endosomal vesi-

cles involved in antigen processing and presentation. Additional examples are: (1) two RAS

family proteins, DIRAS1 and RASGRF1, that are potentially involved in B cell signaling [72];

(2) FGFBP2 potentially having a role in cytotoxic functions of NK, γδ T and CD8+ T cells [88];

(3) NECAB2 potentially being an important regulator of neutrophil apoptosis, autophagy and

NETs; and (4) the enzyme-couple channel TRPM6 involved in neutrophil chemotaxis. While

experimental validation is required to confirm these proposed functions, nonetheless, this

illustrates how additional functional hypotheses can be generated from the information con-

tained within the co-expression modules.

Also found within these modules are genes encoding TFs and transcriptional regulators;

multiple TFs with known roles within the immune system were found within the relevant

modules. Prime examples are the B cell-specific TFs PAX5 and EBF1 that are respectively

within the B cell-specific modules 22 and 38, CIITA is known to regulate MHC class II genes

found within module 41, and DUSP2, in module 26, is a dual-specificity phosphatase that

influences indirectly the expression of killer receptors within the NK gene complex. In order

to assess whether TFs controlling the expression of genes within their own co-expression mod-

ules or in distinct modules, we focused our analyses on B cell modules, given the extensive

ENCODE Chip-seq data for the 76 TFs in cell lines from the B cell lineage. While we detected

an enrichment signal for 45 TFBS in 12 B cell-associated modules. Only two TFs (MYC and

NFATC1) have their TFBS enriched in their own modules [119–122], supporting a network

model of TFs regulating the transcription of genes in distinct co-expressed gene sets, which is

consistent with current literature [19–21, 132].

While the focus of our analyses was to identify functional subgroups of genes, we did per-

form an analysis of TFs that were independent of the co-expression modules described above.

Specifically, we searched for TFs that differentially expressed in a given cell type or lineage.

Indeed, this approach identified many known lineage-specific TFs that are likely involved in
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maintaining lineage commitment and key functions associated with those commitments.

Prime examples were IKZF3 known to be involved in lymphocyte development and homeosta-

sis [127], PAX5 in differentiation and function of mature B cells [133], and FOXP3 in CD4+ T

cell differentiation [134–136]. This analysis also highlighted a few TFs previously unknown to

be associated with specific lineages, such as ZNF860 in B cell differentiation, ZNF385A in

monocyte differentiation, CREB5 in the myeloid lineage, TFCP2L1 in γδ T lineage, and MSC

in the activation of macrophages in response to LPS (S5 Fig and S5 Table). While the expres-

sion patterns were certainly consistent with a role in cell fate decision and/or maintenance,

with many having published confirmatory evidence (18 of 49), future studies will be required

to confirm the role of the remaining candidates.

In the future, the approach described herein could be used for the analysis of circulating

immune cells in a variety of contexts, such as in cross-sectional comparisons between different

immune-mediated diseases, in longitudinal studies of disease progression or response to ther-

apy, or in a comparison of circulating immune cells versus immune cells taken from peripheral

inflammatory sites. It is clear that comparisons in such study designs can be complex, with dif-

ferent expression patterns being a result of changes in cell populations, in addition to gene

expression within cells, and therefore it will be important to rely on careful immunophenotyp-

ing and cell sorting strategies. Alternatively or in complementarity, with an inevitable decrease

in the costs associated with single-cell RNA sequencing (scRNA-seq), this may become a better

option, with the analysis strategy presented herein also being relevant to this experimental

approach.

Supporting information

S1 Text. Analysis of all no-TEG and all no-MRG genes in modules 22, 38 and 41.

(DOCX)

S2 Text. Additional analyses of genes highly-expressed in Neutrophils.

(DOCX)

S1 Fig. Immunophenotyping of immune cell populations from human peripheral blood.

Results are expressed as median percentage among CD3+CD4+ (n = 12), CD3+CD8+ (n = 12)

or CD3+ TCRγδ+ (n = 8) T lymphocyte populations respectively and among CD3-CD19+ B

lymphocyte (n = 12), CD3-CD56+ NK cell (n = 12) or CD14+ monocyte (n = 12) populations,

with quartiles [Q1-Q3] for each subset. CD14+ enriched mononuclear cells were stimulated in
vitro with M-CSF in order to obtain macrophages, with an additional 24h LPS stimulation to

obtain activated macrophages. Cells were stained with the mentioned surface markers and

analyzed by flow cytometry. Results presented are the median MFI of specific staining minus

unstained with quartiles [Q1-Q3]. [9, 95, 137–143].

(DOCX)

S2 Fig. Boxplot of gene expression distribution after normalization before and after nor-

malization. Each boxplot represents the mean of gene expression in log2 for a cell type in our

12 individuals. Panel A shows the log2 of cpm normalized by library size and TMM normaliza-

tion factor. Panel B shows the distribution after variance stabilization by R function voom.

Even after normalization with voom, a function of Limma package, the median of neutrophil

gene distribution is not aligned with other cell types because many more genes are not

expressed in neutrophils than other primary immune cell types in our data [29].

(DOCX)

PLOS ONE Using transcriptomics to identify key functions in human immune cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0233543 May 29, 2020 19 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s004
https://doi.org/10.1371/journal.pone.0233543


S3 Fig. Plot of scale independence and mean connectivity–Pearson correlation. Scale inde-

pendence and mean value connectivity were used to select the β parameter, an exponent to the

gene correlation matrix that determines the emphasis put on higher vs lower correlations [34].

Value 12 was chosen for β because of it as a good trade-off between scale-free topology

(R^2 = 0.719) and connectivity. Therefore, β = 12 was used to compute dissimilarities between

genes with the WGCNA functions, adjacency and TomsimilarityFromExpr (Topology Overlap

Matrix Similarity From Expression) [33, 34]. The red line on scale independence graph repre-

sents value 0.8 (suggested by the authors).

(DOCX)

S4 Fig. Hierarchical trees of gene modules before and after cut tree. Graph A represents the

tree of modules obtained with WGCNA tools. The red line on this graph is the value 0.05 who

chooses to cut the tree to grouping similar modules in one. Graph B represents the new mod-

ules after cuts tree with new numeration.

(DOCX)

S5 Fig. Hematopoietic differentiation scheme and associated transcription factors from

differential gene expression. To identify transcription factors consistent with having a role in

cell fate decisions we examined differential gene expression for all known human transcription

factors (n = 1638) [44]. Schematic simplification is used as a representation of hematopoiesis

from lymphoid and myeloid lineage. Transcription factors are in red and black. Red represents

transcription factors known to be involved in the establishment and/or maintaining cell/line-

age differentiation. The pink background color is used for transcription factors associated with

cytotoxic cells. Blue arrows show increased or decreased expression of genes coding for tran-

scription factors. Complete list of candidate TFs in S5 Table

(DOCX)

S6 Fig. Heatmap of the correlation values (and p-values) of WGCNA modules with pri-

mary immune cell types. Columns represent modules computed with WGCNA and rows,

primary immune cell types. In each square, the first number represents the correlation

between a module and a given cell type and the second number in brackets is the associated p-

value.

(TIF)

S7 Fig. Heatmap of mean normalized expression for a subset of genes. The heatmap repre-

sents gene normalized expression levels (log2 of cpm) in our nine cell types. Red is the higher

value and yellow, the lower.

(DOCX)

S8 Fig. Global and targeted analyses of genes within module 41, associated with B cells and

monocytes, describe MHC class II and antigen processing and presentation functions.

Global and targeted analyses of the genes within module 41 were primarily associated with the

presentation of peptide and lipid antigens. Genes in module 41 are represented in orange: Top
Expressing Genes in dark orange, Module Representative Genes in intermediate orange and

other genes in light orange. Genes from this module act together to establish Major Histocom-

patibility Complex class II function. To see the profile of gene expression mean of all genes of

module 41 presented in this figure refers to the heatmap in S7 Fig.

(DOCX)

S1 Table. List of antibodies used for immunophenotyping.

(DOCX)

PLOS ONE Using transcriptomics to identify key functions in human immune cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0233543 May 29, 2020 20 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233543.s011
https://doi.org/10.1371/journal.pone.0233543


S2 Table. List of antibodies used for monocyte/macrophage immunophenotyping.

(DOCX)

S3 Table. Summary statistics of RNA-Seq data from raw reads through quality control

steps. Values are reads at each step.

(DOCX)

S4 Table. Summary of gene annotation enrichments from DAVID tool (P� 0.05).

(XLSX)

S5 Table. Differential gene expression and ratios of human transcription factors. First

sheet: Differential gene expression and ratios of human TFs presented in S5 Fig. Second sheet:

Differential gene expression and ratios of all known human TFs expressed in our immune cell

dataset (n = 1112). Third sheet: List of all known human TFs not expressed in our immune cell

dataset.

(XLSX)

S6 Table. Percentile, mean, standard deviation, median, and IQR of gene expression read

counts. First sheet: Mean of gene expression read count and percentile values. Second sheet:

Standard deviation of gene expression read count. Third sheet: Median of gene expression

read count. Fourth sheet: Interquartile range of gene expression read count.

(XLSX)

S7 Table. Summary of transcription factor binding site or TFBS enrichments from the

ENCODE project. Empirical ChIP-Seq data in the GM12878 immortalized B cell line was

used within the promoters of the genes within each module associated with B lymphocytes

(P� 0.05).

(XLSX)

S8 Table. Literature review of key transcription factors involved in B-cell differentiation

and maturation. ��� The TFs IRF4, PAX5, and BACH2, along with the absence of BCL6, have

been reported to also play a role in the maturation of mature naïve to memory B cells.

(26751566); Number in parenthesis is PMID number, which is the unique identifier number

used in PubMed for each article.

(DOCX)

S1 Data.

(DOC)

Acknowledgments

Authors would like to thank Martine Dupuis (Centre de recherche Hôpital Maisonneuve-
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